Animal Models of Retinal Vein Occlusion

Meiaad Khayat,1,2 Noemi Lois,1 Michael Williams,3 and Alan W. Stitt1

1Wellcome-Wolfson Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast, United Kingdom
2Department of Anatomy, College of Medicine–Rabigh Branch, King Abdulaziz University, Jeddah, Saudi Arabia
3Centre for Medical Education, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast, United Kingdom

PURPOSE. To provide a comprehensive and current review on the available experimental animal models of retinal vein occlusion (RVO) and to identify their strengths and limitations with the purpose of helping researchers to plan preclinical studies on RVO.

METHODS. A systematic review of the literature on experimental animal models of RVO was undertaken. Medline, SCOPUS, and Web of Science databases were searched. Studies published between January 1, 1965, and March 31, 2017, and that met the inclusion criteria were reviewed. The data extracted included animal species used, methods of inducing RVO, and the clinical and histopathologic features of the models, especially in relation to strengths, limitations, and faithfulness to clinical sequelae.

RESULTS. A total of 128 articles fulfilling the inclusion criteria were included. Several species were used to model human branch and central RVO (BRVO; CRVO) with nonhuman primates being the most common, followed by rodents and pigs. BRVO and CRVO were most commonly induced by laser photocoagulation and all models showed early features of clinical disease, including retinal hemorrhages and retinal edema. These features made many of the models adequate for studying the acute phase of BRVO and CRVO, although macular edema, retinal ischemia, and neovascular complications were observed in only a few experimental animal models (laser-induced model in rodents, pigs, and nonhuman primates, diathermy-induced model in pigs, and following intravitreal injection of PD0325901 in rabbits for BRVO; and in the laser-induced model in rodents, rabbits, and nonhuman primates, diathermy-induced model in nonhuman primates, following permanent ligation of the central retinal vein in nonhuman primates, and with intravitreal injection of thrombin in rabbits for CRVO).

CONCLUSIONS. Experimental animal models of RVO are available to study the pathogenesis of this disease and to evaluate diagnostic/prognostic biomarkers and to develop new therapeutics. Data available suggest laser-induced RVO in pigs and rodents to be overall the best models of BRVO and the laser-induced RVO rods the best model for CRVO.

Keywords: retinal vein occlusion, retinal vein thrombosis, ischemia, experimental models, animal models, in vivo models

Retinal vein occlusion (RVO) is the second most common vascular cause of visual loss, surpassed only by diabetic retinopathy.1–5 Obstruction of the retinal venous system is commonly caused by thrombus formation, which may result in devastating consequences, including macular edema and neovascular complications, leading to visual impairment and blindness.1,6–14 RVO has been typically classified into central (CRVO), branch (BRVO), hemispheric and hemicentral types based on the site of the occlusion.1,2,4,5,15–17 Each of these RVO types has been further subclassified into ischemic and nonischemic forms based on the severity of the disease and the likelihood of developing neovascular complications. Ischemic RVO (iRVO) is the most severe form, associated with higher risk of complications and having a poorer prognosis than non-iRVO.1,2,4,15,17,18

Current treatments of RVO, including laser photocoagulation, intravitreal anti-VEGF therapies, intravitreal steroids, and pars plana vitrectomy, target the complications of RVO, namely macular edema and neovascularization and its consequences,1,5,7,10,16,17,19–24 and may not fully reverse the functional and structural damage result of the disease.10,25–59 Furthermore, each of these treatments carries a risk to patients, such as destruction of the retina following laser photocoagulation, endophthalmitis following intravitreal injections, and cataract and glaucoma as a result of steroid administration. Treatments for macular edema that are a result of RVO have been predominantly investigated for the nonischemic form, with most randomized clinical trials excluding or including only few with the iRVO.55,59,40,45,47,52–55,60 In trials in which they have been included, only approximately 50% or less of patients with iRVO show a meaningful improvement in visual acuity following these therapies,54,57,58,45,40,51,57,58 with often poor final visual acuity (≤ 20/100) despite treatment.10,34,36–38,41,43,51,57

Further research is still needed to improve current understanding of the pathogenesis of RVO as well as to identify more clinically effective and cost-effective therapeutic options. This is especially true for patients with iRVO.

Experimental animal models often can be useful to study disease mechanisms and to test the efficacy and potential...
toxicity of new treatments. Such animal approaches have been successful in ophthalmic research, allowing advancement in our understanding of pathogenesis and development of improved novel therapies. Experimental animal models of RVO also are available, which variously develop functional and structural features resembling those present in people with this disorder. Herein, we aim at providing a comprehensive up-to-date review on experimental animal models of RVO including species, methods of vessel occlusion, their clinicohistopathologic features, and the limits of their translational value. Taken together, this focused and in-depth review ought to help researchers design future studies and appreciate the strengths and weaknesses of the animal models they use.

METHODS

A systematic review of the literature was conducted, and data sources were Medline, SCOPUS, and Web of Science databases. Keywords including “retinal vein occlusion,” “retinal vein thrombosis,” and “retinal vein obstruction” were combined with “experimental models” or “animal models.” The search covered published articles from January 1, 1965, to March 31, 2017, and was filtered to include articles in English only. The included articles of studies describing methods of creating animal models of RVO and their findings were analyzed, and data contained in these articles were used to inform species-specific model systems, the range of methods for inducing vein occlusion, pathologic and clinical features developed in these models, and strengths and limitations of available models. The information extracted was used to populate Tables 1 through 8 of this review. In addition, their clinical value and potential translational implications for the management of patients with this disorder was considered. Changes on levels of cytokines/chemokines/growth factors and other biochemical and molecular events occurring as a result of the induction or RVO in these models, as well as effects of treatments tested in these models, are not summarized herein.

RESULTS

Studies Included

After removal of duplicates, a total of 320 titles were identified and their abstracts obtained and evaluated for potential inclusion in the review. Of the 320 abstracts, 193 were found to relate to studies outside the scope of this review and, thus, were excluded. Full articles of the remaining 128 studies were obtained, found to be directly related to the topic of this review, and used to extract pertinent data.

Species

Several animal species have been used to study RVO, including rodents, rabbits, cats, dogs, pigs, and nonhuman primates (Tables 1, 2). Each of these species has its own size and anatomic advantages, but also ethical challenges and cost implications; these have been summarized in Table 3. Although the retina and retinal vessels of these animals share many anatomic features with humans, differences still exist and are more pronounced in some species (Table 4). None of the animal models, with the exception of the nonhuman primate, have an anatomic macula or fovea centralis. Pigs, cats, and dogs have a central retinal area with high density of ganglion cells and cone photoreceptors known as area centralis, which would correspond to the fovea centralis in humans but is less specialized and cannot be identified by gross fundus examina-
TABLE 2.
Animal Species and Techniques Used to Induce CRVO

<table>
<thead>
<tr>
<th>Method</th>
<th>Species</th>
<th>n</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser Photocoagulation + Diathermy, n</td>
<td>Rodents</td>
<td>9</td>
<td>(ischemia = 4)</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td>1</td>
<td>(ischemia = 1)</td>
</tr>
<tr>
<td></td>
<td>Cats, n</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dogs, n</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonhuman primates, n</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total, n</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Bolded values represent models that addressed macular edema or ischemic features. Ischemia defined by one or more of the following criteria: development of neovascularization, extensive areas of retinal capillary nonperfusion, or areas of capillary nonperfusion associated with atrophy/cell loss of the inner retinal layers (outer retinal layers). 210–213

**Methods of Inducing RVO**

Several techniques have been used to induce an RVO in experimental animals. These have been summarized, including their advantages and disadvantages, in Table 5. In most cases, experimental RVO has been induced by traumatizing one or more retinal veins using laser photocoagulation. 67–75, 80–92, 96–97, 101, 104, 111–115, 118–125, 127, 129–147, 156–167, 174–176, 194, 216

**Branch Retinal Vein Occlusion.** Experimentally, BRVO has been produced by using laser photocoagulation, 70, 80, 89, 96, 97, 100, 105, 127, 132, 142, 146, 156–176, 178, 181, 216 photodynamic coagulation, 95–97, 202, 204, 148, 149 diathermic cauterization, 75, 120–124, 150–152 or intravitreal injection of PD032590, 114

**Laser Photocoagulation.** In this method, laser irradiation is performed on selected retinal veins to produce BRVO. 70, 80, 89, 96, 97, 100, 105, 127, 132, 142, 146, 156–176, 178, 181, 216 Classically, burns are placed approximately 0.5 to 2.0 disc areas from the optic disc, avoiding damage to the retinal arteries. 69–70, 74, 80, 81, 97, 99, 117, 186, 217 Laser photocoagulation is typically done on the slit-lamp using a contact lens, 98–72, 74, 81–85, 86–88, 92–97, 99, 100, 104, 108, 117, 126, 132, 134, 135, 137, 159, 161, 186, 187, 192–194, 196 Some studies have combined laser photocoagulation with vitrectomy. 147–170, 177–178

Different types of laser and wavelengths have been used, commonly 514-nm Argon, and their parameters varied depending on the type of laser used, type of animal, and use or not of adjuvants (Table 6). Photosensitizers, such as Rose Bengal, 57–70, 73, 81, 89, 96–99, 101, 104, 106, 107, 109, 110, 126, 127, 132, 134, 155, 157, 159, 141, 143, 146, 147, 217 erythrosin B, 74 sodium fluorescein, 71, 83, 86, 88, 97, 142, 175, 187, 190–194, 218 chloroaluminium sulfonated phthalocyanine, 105 PAD-S31, 106 and mono-L-aspartyl chlorin e6 (NPe6) 102 have been commonly used with the laser photocoagulation to minimize the amount of the laser energy required to produce the RVO. Rose Bengal has been the most commonly used photosensitizer, 56–70, 73, 81, 89, 96–99, 101, 104, 106, 107, 109, 110, 126, 127, 132, 134, 135, 137, 139, 141, 143, 146, 147, 217 whereby the dye is infused systemically (10–50 mg/kg) and the retinal veins are exposed to highly focused laser irradiation. 67–70, 73, 81, 89, 96–99, 101, 104, 106, 107, 109, 110, 126, 127, 132, 134, 135, 137, 139, 141, 143, 146–147, 217 Combination of intravitreal injec-
tion of thrombin (50 units) and laser photocoagulation has also been reported. Endophotocoagulation has also been used to achieve a vein occlusion; for this technique, an endolaser probe is inserted into the eye through a sclerostomy (without removing the vitreous) and retinal veins are then photocoagulated until evidence of occlusion is seen.\textsuperscript{146,147}

**Photodynamic Therapy.** Photodynamic coagulation is another method that has been used to induce BRVO.\textsuperscript{93–95,112,119,148,149} This method involves light illumination using a slit-lamp and a contact lens, or an endo illuminator in combination with vitrectomy aiming at selected retinal vein or veins, with care not to damage retinal arteries, for a duration ranging between 6 and 20 minutes until evidence of venous occlusion is observed.\textsuperscript{93–95,112,119,148,149} Photosensitizers, such as Rose Bengal,\textsuperscript{93–95,112,119,148,149} sodium fluorescein,\textsuperscript{119} and NPe6,\textsuperscript{82} have been used in different doses depending on the species used to facilitate thrombus formation.

**Diathermic Cauterization.** An alternative way to produce experimental BRVO is by using diathermy, which has been undertaken via a pars plana sclerotomy.\textsuperscript{75,120–124,150–152} In cats, BRVO has been induced with indirect ophthalmoscopy and 20-gauge bipolar diathermy that is applied to the targeted vein/veins for 5 seconds.\textsuperscript{120–124} In pigs, a technique has been described that produces a BRVO following a temporal canthotomy, conjunctival incision, and performance of three sclerotomies at 10, 2, and 5 o’clock, 2 mm posterior to the corneal limbus.\textsuperscript{150–153} In this method, a light source and a blunt bipolar diathermy probe are inserted into the vitreous and one or two major retinal veins are coagulated approximately 1 disc diameter away from the optic disc for 5 to 7 seconds after 5 seconds of compression and under direct view.

<table>
<thead>
<tr>
<th>Animal Models of RVO</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rodents</strong></td>
<td>Low cost</td>
<td>Small eyes</td>
</tr>
<tr>
<td></td>
<td>Easy to obtain</td>
<td>Lack of macula</td>
</tr>
<tr>
<td></td>
<td>Easy to handle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reproducible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Feasible for genetic manipulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suitable for evaluating the effects of therapeutic interventions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small size of the animal, which allows keeping larger number of animals in smaller spaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Share some anatomic similarities with human (Table 4)</td>
<td></td>
</tr>
<tr>
<td><strong>Rabbits</strong></td>
<td>Low cost</td>
<td>Anatomy of the rabbit’s retina significantly different from that of humans</td>
</tr>
<tr>
<td></td>
<td>Easy to obtain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relatively large eyes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accessible retinal vessels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eye very suitable for diagnostic and surgical procedures</td>
<td></td>
</tr>
<tr>
<td><strong>Cats</strong></td>
<td>Relatively large eyes</td>
<td>High cost</td>
</tr>
<tr>
<td></td>
<td>Accessible retinal vessels</td>
<td>Limited availability</td>
</tr>
<tr>
<td></td>
<td>Eye very suitable for diagnostic and surgical procedures</td>
<td>Can be aggressive and difficult to handle</td>
</tr>
<tr>
<td></td>
<td>Share some anatomic similarities with human (Table 4)</td>
<td>Ethical considerations</td>
</tr>
<tr>
<td><strong>Dogs</strong></td>
<td>Relatively large eyes</td>
<td>High cost</td>
</tr>
<tr>
<td></td>
<td>Accessible retinal vessels</td>
<td>Limited availability</td>
</tr>
<tr>
<td></td>
<td>Eye suitable for diagnostic and surgical procedures</td>
<td>Can be aggressive and difficult to handle</td>
</tr>
<tr>
<td></td>
<td>Share some anatomic similarities with human (Table 4)</td>
<td>Ethical considerations</td>
</tr>
<tr>
<td><strong>Pigs</strong></td>
<td>Eye size and scleral thickness are nearly identical to humans</td>
<td>High cost</td>
</tr>
<tr>
<td></td>
<td>Eye suitable for diagnostic and surgical procedures</td>
<td>Large size of the animal</td>
</tr>
<tr>
<td></td>
<td>Share some anatomic similarities with human (Table 4)</td>
<td>Requires large housing facilities</td>
</tr>
<tr>
<td><strong>Nonhuman primates</strong></td>
<td>Anatomy almost identical to human</td>
<td>High cost</td>
</tr>
<tr>
<td></td>
<td>Accessible retinal vessels</td>
<td>Limited availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difficult to handle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires highly experienced team, and special housing facilities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethical considerations</td>
</tr>
</tbody>
</table>
through an operating microscope and with the aid of a fundus contact lens.\textsuperscript{150–153} This procedure does not involve vitrectomy.\textsuperscript{150–153}

**Intravitreal Injection of Substances.** PD0325901 (N-[2,3-dihydroxy-propoxy]-3,4-difluoro-2-[fluoro-4-iodo-phenylamino]-benzamide) is a mitogen-activated protein kinase inhibitor that has been used in clinical trials for the treatment of solid tumors\textsuperscript{67–71,73,74,81,83,85,86,88,89,101,104–107,109,110,126,132,134,135,137,139,141–143,146,147,157–167} diathermic cauterization,\textsuperscript{168–170,172,195} permanent ligation of the central retinal vein,\textsuperscript{67–75,101,111,157–167} diathermic cauterization,\textsuperscript{168–170,172,195} transient clamping/ligation of the optic nerve,\textsuperscript{76–79} or intravitreal injection of thrombin,\textsuperscript{102,219} PE6,\textsuperscript{103} or endothelin-1 (ET-1).\textsuperscript{113}

**Laser Photocoagulation.** In this method, all major branches are irradiated with laser to produce CRVO,\textsuperscript{67–75,101,111,157–167} diathermic cauterization,\textsuperscript{168–170,172,195} permanent ligation of the central retinal vein,\textsuperscript{174} transient clamping/ligation of the optic nerve,\textsuperscript{76–79} or intravitreal injection of thrombin,\textsuperscript{102,219} PE6,\textsuperscript{103} or endothelin-1 (ET-1).\textsuperscript{113}

**Central Retinal Vein Occlusion.** CRVO has been produced by laser photocoagulation,\textsuperscript{67–75,101,111,157–167} diathermic cauterization,\textsuperscript{168–170,172,195} permanent ligation of the central retinal vein,\textsuperscript{174} transient clamping/ligation of the optic nerve,\textsuperscript{76–79} or intravitreal injection of thrombin,\textsuperscript{102,219} PE6,\textsuperscript{103} or endothelin-1 (ET-1).\textsuperscript{113}

**Diathermic Cauterization.** Diathermic cauterization of the central retinal vein has been achieved through a lateral orbitotomy approach in nonhuman primates to produce CRVO.\textsuperscript{168–170,172,195} In this method, diathermy is applied at the central retinal vein on the inferiomedial aspect of the optic nerve as it exits the optic nerve sheath, avoiding injury to the ciliary vessels.\textsuperscript{166–170,172,195}

**Mechanical Ligation.**

- Permanent ligation of central retinal vein: Mechanical ligation of the central retinal vein was used in nonhuman primates to produce CRVO in one study.\textsuperscript{174} Through a lateral orbital approach and using the operating microscope to aid visualization and achieve adequate magnification, the central retinal vein was identified and ligated using an 8–0 silk suture. Two approaches were then used to achieve a CRVO: (1) a small incision was made proximal to the suture and neovascular was introduced through a cannula into the central retinal vein where it solidified, or (2) the central retinal vein was cut after ligation.\textsuperscript{174}
- Transient ligation or clamping of the optic nerve: Transient ligation/clamping (60–120 minutes) of the optic nerve using a lateral orbital approach has been used also to produce CRVO in rats and in pigs.\textsuperscript{76–79} This method, however, included the ciliary vessels and the central retinal artery and, thus, not reproducing an isolated CRVO.

**Intravitreal Injection of Substances.**

- Thrombin: A different CRVO model, the Hirosaki model, was developed in rabbits as described in one study.\textsuperscript{102} Based on the premise that the extrinsic coagulation mechanism can be triggered by thromboplastin in the perivascular connective tissues, CRVO was successfully created through the intravitreal injection of thrombin over the wall of the rabbit’s retinal veins (thrombin solution 0.01 mL [5 units]) under direct vision using a 27-gauge needle. A Goldmann contact lens and operational microscope were used to view the fundus.\textsuperscript{102}
- PE6: Another animal model of CRVO, also in rabbits, described in one study, involved an intravitreal injection of a hydrophilic photosensitizer, mono-L-aspartyl chlorin e6 (PE6) (50 and 100 µg). In this model, there was no direct exposure to a light source, instead the animals were naturally exposed to the daily light-dark cycle. The injection was performed approximately 2 to 3 mm posterior to the limbus using a 30-gauge needle and a 1-mL syringe.\textsuperscript{103} In this particular model, CRVO, central retinal artery occlusion, and various degrees of vitreous hemorrhage developed after 1 week following injection.\textsuperscript{103}
- ET-1: ET-1 is a peptide with vasoconstrictive properties normally produced by vascular endothelial cells.\textsuperscript{113} Intravitreal injection of 1000 pmol of ET-1 solution over the disc, as observed by ophthalmoscope, using a 29-gauge needle and a 1-mL syringe was used to induce CRVO in rabbits in one study.\textsuperscript{113} In this model, the occlusion lasted only 50 to 70 minutes.\textsuperscript{113}

### Clinical and Histopathologic Features of RVO Models

Clinical and/or histopathologic features observed in animal models of BRVO and CRVO were described in 89 and 38 articles, respectively, identified in our search. Macular edema has been addressed in only 4 of 21 studies on nonhuman primate models of BRVO, all laser-induced\textsuperscript{180,186,190,195} and in only 2 of 21 studies on nonhuman primate models of CRVO.

---

**Table 4.** Similarities and Differences of Retina and Retinal Vasculature of the Different Animal Species Used in RVO Studies

<table>
<thead>
<tr>
<th>Species</th>
<th>Rodents</th>
<th>Rabbits</th>
<th>Cats</th>
<th>Dogs</th>
<th>Pigs</th>
<th>Nonhuman primates</th>
<th>Humans</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomic macula and fovea centralis</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
<td>Present</td>
<td>197–204</td>
</tr>
<tr>
<td>Tapetum layer</td>
<td>Absent</td>
<td>Absent</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
<td>Absent</td>
<td>205–209</td>
</tr>
<tr>
<td>Vascular pattern</td>
<td>Holangiotic</td>
<td>Merangiotic</td>
<td>Holangiotic</td>
<td>Holangiotic</td>
<td>Holangiotic</td>
<td>Holangiotic</td>
<td>Holangiotic</td>
<td>210–215</td>
</tr>
<tr>
<td>Central retinal vein</td>
<td>Single</td>
<td>Single</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>210–215</td>
</tr>
<tr>
<td>Central retinal artery</td>
<td>Single</td>
<td>Single</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>Multiple</td>
<td>210–215</td>
</tr>
<tr>
<td>Major arterial and venous branches</td>
<td>5–7</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>210–215</td>
</tr>
</tbody>
</table>

Bold text indicates as in humans.
both diathermy-induced.\textsuperscript{170,195} Ischemia, defined by development of neovascular complications, extensive areas of capillary nonperfusion (capillary dropout), or both, or capillary nonperfusion associated with atrophy/cell loss of the inner retinal layers, has been reported in 28 of 89 studies in laser-induced BRVO models of rodents (n = 8),\textsuperscript{80,83,85,89,90,92,96,97} pigs (n = 6),\textsuperscript{130–134,154} and nonhuman primates (n = 13).\textsuperscript{175,176,178–181,184,187–190,192,193,114} PD0325901-induced BRVO models in rodents (n = 4),\textsuperscript{67–69,74} rabbits (n = 1),\textsuperscript{101} and nonhuman primates (n = 9).\textsuperscript{157–160,162–166} In permanent ligations of central retinal vein CRVO models in nonhuman primates (n = 1),\textsuperscript{174} and in thrombin-induced CRVO models in rabbits (n = 1).\textsuperscript{102} The features described in this section, unless otherwise specified, do not refer to the changes observed at the site of the occlusion and caused by the procedure used to create the RVO itself, but rather those result of the vein occlusion.

All models showed early features classically observed in human BRVO and CRVO, including cessation of blood flow and venous dilation, engorgement, and tortuosity distal to the

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Easy to undertake</td>
<td>• Inner retina damage at the site of the laser treatment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Successful in 89%–100% of cases</td>
<td>• May rupture retinal vessels and cause vitreous hemorrhage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Many studies supporting this technique</td>
<td>• Requires laser equipment.</td>
<td></td>
</tr>
<tr>
<td>Photodynamic therapy + photosensitive dye</td>
<td>• Produces BRVO</td>
<td>• Potential phototoxicity with photosensitizers and sun/light exposure.</td>
<td>93–95, 112, 119, 148, 149</td>
</tr>
<tr>
<td></td>
<td>• Successful in 50%–100% of cases</td>
<td>• Inner/outer retinal damage at the site of the light application.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Exudative retinal detachment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Retinal necrosis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Requires specialized equipment.</td>
<td></td>
</tr>
<tr>
<td>Diathermic cauterization</td>
<td>• Produces CRVO and BRVO</td>
<td>• Invasive</td>
<td>120–124, 150–153, 168–170, 172, 173, 195</td>
</tr>
<tr>
<td></td>
<td>• Successful in 90%–100% of cases</td>
<td>• Requires access to surgical facilities to produce CRVO.</td>
<td></td>
</tr>
<tr>
<td>Permanent ligation of the central retinal vein</td>
<td>• Produces CRVO</td>
<td>• Invasive</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>• Successful in 100% of cases</td>
<td>• Requires access to surgical facilities to produce CRVO.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• May affect ciliary vessels and central retinal artery.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Only 1 reported study.</td>
<td></td>
</tr>
<tr>
<td>Transient ligation/clamping of optic nerve</td>
<td>• Produces CRVO</td>
<td>• Invasive</td>
<td>76–79, 128</td>
</tr>
<tr>
<td></td>
<td>• Successful in 100% of cases</td>
<td>• Requires access to surgical facilities to produce CRVO.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Affects ciliary vessels and central retinal artery.</td>
<td></td>
</tr>
<tr>
<td>Intravitreal thrombin injection</td>
<td>• Produces CRVO</td>
<td>• Successful in only 43% of cases</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>• No mechanical vascular damage</td>
<td>• Only 1 reported study.</td>
<td></td>
</tr>
<tr>
<td>Intravitreal ET-1 injection</td>
<td>• Produces BRVO</td>
<td>• Only 1 reported study.</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>• Successful in 100% of cases</td>
<td>• Transient occlusion (50–70 minutes).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No mechanical vascular damage</td>
<td>• Affects both retinal arteries and veins.</td>
<td></td>
</tr>
<tr>
<td>Intravitreal NPe6 injection</td>
<td>• Produces BRVO</td>
<td>• Only 1 reported study.</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>• Successful in 100% of cases</td>
<td>• May produce features unrelated to RVO.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No mechanical vascular damage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intravitreal PD0325901 injection</td>
<td>• Produces BRVO</td>
<td>• Only 1 reported study.</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>• Successful in 100% of cases</td>
<td>• May produce features unrelated to RVO.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No mechanical vascular damage</td>
<td>• Takes 1 week to produce RVO.</td>
<td></td>
</tr>
</tbody>
</table>

BRVO, branch retinal vein occlusion; CRVO, central retinal vein occlusion; RVO, retinal vein occlusion; ET-1, endothelin-1; NPe6, mono-L-aspartyl chlorin e6.
<table>
<thead>
<tr>
<th>Animal</th>
<th>Type of Laser</th>
<th>Wavelength, nm</th>
<th>Adjuvant</th>
<th>Power</th>
<th>Duration, s</th>
<th>Size, μm</th>
<th>No. of Shots</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mice</td>
<td>Krypton</td>
<td>530.9</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>50 mW</td>
<td>3</td>
<td>50 μm</td>
<td>2–3</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Yag</td>
<td>552</td>
<td>1 mL 1% fluorescein</td>
<td>200 mW</td>
<td>0.5</td>
<td>50 μm</td>
<td>7–12</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>532</td>
<td>0.15 mL Rose Bengal</td>
<td>160 mW</td>
<td>0.8–2.5</td>
<td>50 μm</td>
<td>2–5</td>
<td>91, 92</td>
</tr>
<tr>
<td>Rats</td>
<td>Argon</td>
<td>514</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>80–150 mW</td>
<td>0.1–0.2</td>
<td>50–100 μm</td>
<td>6–20</td>
<td>68, 69, 73, 81, 83, 96, 217, 220</td>
</tr>
<tr>
<td>Argon</td>
<td>490</td>
<td>IV PAD-S51 (10 mg/kg)</td>
<td>3 mW</td>
<td>N/A</td>
<td>300 μm</td>
<td>N/A</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td>532</td>
<td>IP 0.3 mL 10% sodium fluorescein</td>
<td>100–200 mW</td>
<td>0.2</td>
<td>50 μm</td>
<td>3–5</td>
<td>124</td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td>4.2</td>
<td>IV 0.2 mL 10% sodium fluorescein</td>
<td>50–100 mW</td>
<td>0.5–1</td>
<td>50 μm</td>
<td>1–12</td>
<td>71, 72, 86, 88</td>
</tr>
<tr>
<td>Diode</td>
<td>552</td>
<td>IV Rose Bengal (20 mg/kg)</td>
<td>100 mW</td>
<td>0.4</td>
<td>75 μm</td>
<td>N/A</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Diode</td>
<td>552</td>
<td>180–240 mW</td>
<td>IV Rose Bengal (20 mg/kg)</td>
<td>3 mW</td>
<td>N/A</td>
<td>300 μm</td>
<td>N/A</td>
<td>80</td>
</tr>
<tr>
<td>Diode</td>
<td>675</td>
<td>IV PAD-S51 (10 mg/kg)</td>
<td>100 mW</td>
<td>0.2</td>
<td>100 μm</td>
<td>N/A</td>
<td>5–7</td>
<td>80</td>
</tr>
<tr>
<td>N/A</td>
<td>532</td>
<td>IV 2% Erythrosin B (20 mg/kg)</td>
<td>0.14 mW</td>
<td>0.3</td>
<td>100 μm</td>
<td>5–20</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Rats</td>
<td>Argon</td>
<td>N/A</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>90–120 mV150–300 mW</td>
<td>0.2–0.5</td>
<td>50–125 μm</td>
<td>5–20</td>
<td>101, 104, 107</td>
</tr>
<tr>
<td>Argon</td>
<td>532</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>150–300 mW</td>
<td>0.5</td>
<td>125 μm</td>
<td>10–30</td>
<td>109, 110</td>
<td></td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td>532</td>
<td>IV Rose Bengal (50 mg/kg)</td>
<td>0.14 mW</td>
<td>0.3</td>
<td>100 μm</td>
<td>5–20</td>
<td>106</td>
</tr>
<tr>
<td>Diode</td>
<td>670</td>
<td>IV CASPc (5 mg/kg)</td>
<td>2 mW</td>
<td>N/A</td>
<td>0.5 mm²</td>
<td>N/A</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Cats</td>
<td>Argon</td>
<td>514</td>
<td>300–500 mV</td>
<td>0.2</td>
<td>200 μm</td>
<td>N/A</td>
<td>20–25</td>
<td>116–118</td>
</tr>
<tr>
<td>Dogs</td>
<td>Argon</td>
<td>514</td>
<td>IV Rose Bengal (50 mg/kg)</td>
<td>100–150 mW</td>
<td>0.2</td>
<td>100 μm</td>
<td>15–20</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Diode</td>
<td>514</td>
<td>IV Rose Bengal (40 mg/kg)</td>
<td>100–150 mW</td>
<td>0.2</td>
<td>100 μm</td>
<td>15–20</td>
<td>127</td>
</tr>
<tr>
<td>Pigs</td>
<td>Argon</td>
<td>514</td>
<td>IV Rose Bengal (10–15 mg/kg)</td>
<td>100–180 mW</td>
<td>1</td>
<td>100–125 μm</td>
<td>4–6</td>
<td>132, 134, 137, 139, 141, 151, 155</td>
</tr>
<tr>
<td>Argon</td>
<td>514</td>
<td></td>
<td>250 mW</td>
<td>0.2–0.5</td>
<td>500 μm</td>
<td>N/A</td>
<td>136, 140</td>
<td></td>
</tr>
<tr>
<td>Argon</td>
<td>532</td>
<td></td>
<td>400 mW</td>
<td>0.5</td>
<td>N/A</td>
<td>20–40</td>
<td>144, 145, 156</td>
<td></td>
</tr>
<tr>
<td>Argon (endo-photocoagulation)</td>
<td>532</td>
<td></td>
<td>IV Rose Bengal (10 mg/kg)</td>
<td>140 mW</td>
<td>0.1</td>
<td>N/A</td>
<td>146, 147</td>
<td></td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td></td>
<td>IV 1 mL 10% sodium fluorescein</td>
<td>100–20 mW</td>
<td>0.2</td>
<td>200 μm</td>
<td>N/A</td>
<td>142</td>
</tr>
<tr>
<td>Nonhuman primates</td>
<td>Argon (coherence radiation 800)</td>
<td>N/A</td>
<td>IV 0.5–2 mL of 10% sodium fluorescein</td>
<td>100–450 mW</td>
<td>0.2</td>
<td>50–100 μm</td>
<td>N/A</td>
<td>192–194</td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td></td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>150–190 mW</td>
<td>5</td>
<td>100 μm</td>
<td>N/A</td>
<td>166</td>
</tr>
<tr>
<td>Argon</td>
<td>Green</td>
<td></td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>400–500 mW</td>
<td>0.5</td>
<td>500 μm</td>
<td>N/A</td>
<td>167, 185</td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td></td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>200–500 mW</td>
<td>0.1–0.2</td>
<td>100–200 μm</td>
<td>N/A</td>
<td>186</td>
</tr>
<tr>
<td>Argon</td>
<td>675</td>
<td></td>
<td>IV CASPc</td>
<td>N/A</td>
<td>N/A</td>
<td>300 μm</td>
<td>N/A</td>
<td>159</td>
</tr>
<tr>
<td>Argon</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>129, 157, 158, 176-181</td>
<td></td>
</tr>
<tr>
<td>Xenon arc</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>188, 189</td>
<td></td>
</tr>
<tr>
<td>Dye</td>
<td>577</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>188, 189</td>
<td></td>
</tr>
<tr>
<td>Krypton</td>
<td>N/A</td>
<td></td>
<td>IV Rose Bengal (4 mg/kg)</td>
<td>150–190 mW</td>
<td>5</td>
<td>100 μm</td>
<td>N/A</td>
<td>166</td>
</tr>
<tr>
<td>Diode</td>
<td>664</td>
<td></td>
<td>IV NPe6 (2 mg/kg)</td>
<td>N/A</td>
<td>N/A</td>
<td>1200 μm</td>
<td>N/A</td>
<td>82</td>
</tr>
</tbody>
</table>

CASPc, chloraluminium sulfonated phthalocyanine; IV, intravenous; IP, intraperitoneal; N/A, no data available.
adjacent to the extracellular edema often appeared shrunken or
and resolved 7 to 28 days following occlusion.70,74,89,96,97,102,108.
129,156,169,170,172,192,193,221 various degrees of exudative retinal
detachment developed in many eyes of laser-induced and
diathermy-induced BRVO.67,74,80,85,89,96,97,105,115,121,124,126,132.
186 and laser-induced CRVO eyes.67,70,74 Bovine retinal
detachment also was observed in many models that resolved
spontaneously during follow-up.67,70,74,85,87 Changes in the
thickness of the overall retina and individual retinal layers as a
result of the edema (thickening) or ischemia (thinning) were
evaluated mainly by histopathology.70,74,80,85,89,92,94,95,114,121,129,
131–133,151,154,169,170,171,173,176,178,179,180,187,189,190,192 in five studies, optical
coherence tomography (OCT) was used also for this pur-
pose.57,70,75,80,90,91,102 Both CRVO and BRVO models showed significant increase in the thickness of the inner retinal layers
1 to 4 days postinduction, followed by gradual reduction over
time, with follow-up periods ranging between 7 and 28 days. In
many models, retinal thickness was reduced during the follow-
up to values below those detected at baseline (atrophic
thinning); this was observed at 7 to 14 days from RVO
induction.75,80,90,91,100

Branch Retinal Vein Occlusion. Macular Edema. Macular edema in the nonhuman primate models was observed as early as 1 to 6 hours following venous occlusion90,195 and became prominent at 7 to 9 days postocclusion.180,193 It was found in up to 100% of treated eyes in one of the four studies on nonhuman primate models that described macular edema in induced BRVO (see above).186 Both intracellular neural and extracellular edema were reported.180,190,193 The edema was mainly observed in the nerve fiber layer and outer plexiform layer.190,193 Capillaries adjacent to the extracellular edema often appeared shrunken or compressed.190 In addition, macular edema was often associated with photoreceptor cell loss, which persisted after resolution of macular edema.180,186,193 Spontaneous resolution of macular edema occurred in all occluded eyes between 14 days and 2 years after laser photocoagulation clinically.180,186,190 in one study, histopathologic examination of six eyes at 48 months showed cystic spaces in the outer plexiform layer in four of six eyes.180 Retinal Capillary Nonperfusion and Reperfusion. Various degrees of capillary nonperfusion in laser-induced, diathermy-
induced, and PD0325901-induced models of BRVO were reported.70,74,80,85,89,96,97,100,105,122,131,150,153,157,175,176,180,189,191,193,221 Areas of capillary nonperfusion were observed as early as 3 days following venous occlusion85,89 and found to progress with time.170,179,192 Extensive or severe areas of capillary nonperfusion were prominent 1 to 4 weeks following vein occlusion192,187,192,222 and were observed in up to 75% of eyes.190,153,221 The areas of capillary nonperfusion persisted during the follow-up, which ranged between 1 and 20 weeks, despite reperfusion.70,80,85,89,92,96,97,132,153,150,175,179,189,191–
193,221,222 Reperfusion in these models was either by recana-
lization/reopening of the occluded vessels in some or all eyes,
70,80,85,89,92,93,95–97,104,105,110,112,115,120,126,129,152,153,157,158,
166,187,188 or development of collateral vessels.85,89,92,96,104,105,120,121,124,129,133,135,157,175,176,180,183,187,189,192,192,222 Recanalization
was observed in 0% to 100% of eyes of BRVO models 1 to 14 days following induction.70,80,85,89,92,93,95–97,104,105,110,112,126,129,132,135,186,221 Collateral vessels were observed to 14 days following establishment of the RVO.70,92,129,179,180,192 (Tables 7, 8).

Neovascular Complications. Posterior segment neovascula-
risation occurred in some laser-induced BRVO models in
rodents,85,89,96 pigs,132,154,154,221 and nonhuman pri-
mates,175,188,189,192 but not in the other BRVO models. Retinal
and/or disc neovascularisation was observed in 8.3% of eyes as early as 7 days postocclusion,89 and in 60% to 70% of eyes 14
days following laser induction in rodent models.89 In laser-
induced pig models, retinal and/or disc neovascularisation
were described in approximately 50% to 93% of eyes 3 to 4
weeks following RVO induction152,153,221,222 and up to 100% of
eyes at 6 weeks.134,155 In laser-induced nonhuman primate models, 9% of eyes developed retinal neovascularisation at 4 weeks.192 Anterior segment neovascularisation was observed in laser-induced nonhuman primate models when three major branches were targeted.176,178,181,184 In this model, up to 100% of eyes developed iris neovascularisation within the first 6 days of
occlusion.176,178,181,184 and 17% to 20% developed neovascular
glaucoma within 25 days of follow-up.176,178 There was no spontaneous regression during follow-up of 28 to 84
days.136,90 Vascular Endothelial and Pericyte Cell Loss. Damage and
tissue of the vascular endothelial cells and pericytes was detected by histopathologic examination in experimental animal models of BRVO,80,107,120,187,190,193 which resulted in gas
erostral vesels with glial invasion.170,187,193 observed as early as 1 to 48 hours postocclusion.120,190,193 Endothelial cell
apoptosis was detected as early as 1 day postocclusion.190
Photoceptor cell loss was observed 3 days following occlusion and significantly worsened at 7 days with 40% pericyte cell loss detected.90 Retinal Atrophy. Atrophy (thinning/loss) of the inner retinal
layers5,70,80,89,91,92,94,95,121,127,125,135,151,154,179,187,189,190,192,195,222 and replacement with glia.151,187 has been reported. The
loss of the inner retinal layers was first observed 3 days postocclusion89 and was marked at 7 to 28 days of follow-up.70,80,89,91,92,94,95,152,153,151,190,192 Damage of the outer retinal layers and loss of the photoreceptors was observed distal to the site of the occlusion in some eyes with laser-induced BRVO and ischemia at 3 to 6 weeks postocclusion.132,153,222 Photoreceptor cell loss was observed in 67% of eyes at
3 months following the occlusion80 Damage to the photorecep-
tors was reported in photodynamic-induced thrombosis in rats
within 2 days of the occlusion, which was most likely related
to the photodynamic therapy itself rather than the result of
ischemia.112 Unspecified RPE changes were reported 4 weeks to 3 months following occlusion in laser-induced BRVO
nonhuman primate models.152,180,192 Functional Changes. When conducted, ERG studies showed reduction of the “a” and “b” wave amplitudes of both scotopic and photopic ERG at 1, 2, 3, 4, 6, and 7 days
following laser-induced BRVO in rat models.180,100 In multifocal
ERG, a significant decrease in the P1 and N1 amplitudes and
prolonged implicit times in the affected retina were observed 4
weeks following thrombus formation in diathermy-induced
BRVO in pig models.151,152 Other Features. Other features also were observed in some eyes with experimental animal BRVO, such as cotton wool
spots, detected at 3 days to 6 weeks in laser-induced
nonhuman primate models,80,192 venous sheathing between 7
days and 3 months,125,127,129,152,152 microaneurysms 1 to 8
months,12,125 and reduction of preretinal oxygen saturation
measured at different time points between 60 minutes and 3
weeks following occlusion.100,120,121,125,150,152 Central Retinal Vein Occlusion. Macular Edema. Macular edema was observed as early as 48 hours following venous thrombosis in 14% to 66% of CRVO nonhuman primate models
induced by diathermy.170,195 This had resolved spontaneously
in all eyes 14 days following induction170,195 (Tables 7, 8).

Capillary Nonperfusion and Reperfusion. Various degrees of capillary nonperfusion were reported in laser-induced,
<table>
<thead>
<tr>
<th>Animal Models of RVO</th>
<th>Disease</th>
<th>Retinal Hemorrhage</th>
<th>Retinal Edema</th>
<th>MO</th>
<th>CNP</th>
<th>Recanalization</th>
<th>Collaterals</th>
<th>Posterior Segment NV</th>
<th>Anterior Segment NV</th>
<th>Loss of EC/Pericytes</th>
<th>Loss of IRL</th>
<th>Loss of ORL</th>
<th>RPE Changes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodents</td>
<td>Laser photocoagulation</td>
<td>89–100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>70, 74, 80, 83–86, 88–92, 96–100, 220</td>
</tr>
<tr>
<td>Rabbits</td>
<td></td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>104–107, 109, 110</td>
</tr>
<tr>
<td>Cats</td>
<td></td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Dogs</td>
<td></td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pigs</td>
<td></td>
<td>93–100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>A</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Nonhuman primates</td>
<td></td>
<td>100</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Rodents</td>
<td>Photodynamic therapy</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td>Rabbits</td>
<td></td>
<td>75</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N</td>
<td>N/A</td>
<td>M/A</td>
</tr>
<tr>
<td>Cats</td>
<td></td>
<td>50</td>
<td>N</td>
<td>N/A</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pigs</td>
<td></td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Diathermy</td>
<td>Cats</td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>120–122, 124</td>
</tr>
<tr>
<td>Pigs</td>
<td>Rabbits</td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>A</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>150–153</td>
</tr>
</tbody>
</table>

CNP, capillary nonperfusion; EC, endothelial cells; IRL, inner retinal layers; MO, macular edema; N, not developed; N/A, not assessed/no data available; NV, neovascularization; ORL, outer retinal layers; Y, developed.
<table>
<thead>
<tr>
<th>Animal Models of RVO</th>
<th>Retinal Hemorrhage</th>
<th>Retinal Edema</th>
<th>MO</th>
<th>CNP</th>
<th>Recanalization</th>
<th>Collaterals</th>
<th>Posterior Segment NV</th>
<th>Anterior Segment NV</th>
<th>Loss of EC/Pericytes</th>
<th>Loss of IRL</th>
<th>Loss of ORL</th>
<th>RPE changes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser photocoagulation</td>
<td>Rodents</td>
<td>92-100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Rabbits</td>
<td>93</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Nonhuman primates</td>
<td>100</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td>Diathermy</td>
<td>Nonhuman primates</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Permanent mechanical ligation of central retinal vein</td>
<td>Nonhuman primates</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Transient ligation/clamping of optic nerve</td>
<td>Rodents</td>
<td>N/A</td>
<td>N/A</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pigs</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intravitreal thrombin</td>
<td>Rabbits</td>
<td>43</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Intravitreal NPe6</td>
<td>Rabbits</td>
<td>N/A</td>
<td>Y</td>
<td>N/A</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Intravitreal ET-1</td>
<td>Rabbits</td>
<td>100</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
permanent ligation of the central retinal vein, and thrombin-induced CRVO models. In one of these studies, it was found to become extensive 2 to 4 weeks following the induction of CRVO and progressed to involve up to 75% of the retinal area 7 weeks postinduction of RVO by laser photocoagulation in 67% of eyes. In thrombin-induced CRVO in rabbits, extensive areas of retinal capillary nonperfusion were observed at 3 months following the occlusion. Recanalization or reopening of the occluded vessels was reported in many studies of laser-induced CRVO. This was observed 1 to 21 days postocclusion in 17% to 90% of rats, with no spontaneous regression described. Neovascularization was observed in nonhuman primate models, however, posterior segment neovascularization was described in only one study, in which disc neovascularization was detected in 17% of eyes distal to the site of laser photocoagulation within 3 to 7 days postocclusion; this resolved spontaneously at day 87, but not in other studies with follow-up periods ranging between 1 and 24 weeks. Thrombin-induced CRVO in rabbits showed retinal neovascularization in 60% of eyes at 3 months following injection. Spontaneous regression of neovascularization in this model was not reported. Iris neovascularization was observed only in laser-induced nonhuman primate models. This was detected 4 to 22 days postocclusion in 100% of eyes, with some having spontaneous regression 13 to 60 days following laser photocoagulation. Iris fluorescein leakage from iris new vessels was observed at 5 days of follow-up in 50% of eyes. Neovascular glaucoma developed in 18% to 53% of eyes in the laser-induced nonhuman primate model 12 to 21 days following occlusion.

Vascular Endothelial and Pericyte Cell Loss. Vascular endothelial and pericyte cell loss has not been described in experimental models of CRVO. Retinal Atrophy. Atrophic thinning of the inner retina, which was reported 7 to 21 days in rodents and rabbit models following laser photocoagulation, was observed in 10 days in diathermy-induced nonhuman primate models, which was in this model associated with gliosis. The ganglion cell loss was observed in overall retina (central, midperipheral, and peripheral retinal regions) was reported to be approximately 11% at 7 days, 30% to 51% at 14 days, and 40% at 21 days following laser-induced RVO in rodents. Atrophy of the outer nuclear layers distal to the site of laser photocoagulation was reported as early as 4 days following vein occlusion using laser photocoagulation in rodent models. RPE changes were observed in many of the CRVO models (Tables 7, 8).

Functional Changes. Loss of retinal function in these models was confirmed with ERG studies that showed significant reduction of amplitudes in both scotopic and photopic ERG in laser-induced CRVO in rodents and temporary ligation of optic nerve in rodents. Other Features. Disc hyperemia was observed within 48 hours in up to 100% of diathermy-induced CRVO in nonhuman primate models, which was secondary to the procedure rather than to the CRVO.
Although thrombin-induced CRVO rabbit models showed ischemic features, namely areas of capillary nonperfusion and development of retinal neovascularization in 60% of eyes, this feature was observed at or after 3 months, which makes the study of the neovascularization in this model time-consuming. In addition, the success rate of developing RVO in this model is as low as 45%, and there are not enough studies in the literature that would allow validating the findings in this model. Similarly, laser-induced iCRVO and PD0525901-induced iBRVO in rabbits do not have adequate supporting literature.

Clinical Value of RVO Models

Although therapeutic strategies are available for people suffering from RVO, these are limited, and a relatively large proportion of patients still lose sight as a result, especially those with iRVO. Treatment is, at present, delivered only once. Thus, it is clear that advances in the management of people with RVO are much needed. Animal models of RVO have helped to better understand the pathogenic events taking place as a result of the disease as well as to trial new treatments. It is likely that several pathways may be implicated in the development and progression of the disease and that different compensatory responses may take place, which would explain the heterogeneity of the natural course and treatment responses observed in humans; experimental animal models of RVO have advanced the knowledge on this area. As retinal ischemia, macular edema, and anterior/posterior segment neovascularization are the major causes of visual loss due to RVO, experimental animal models that more reproducibly develop these complications would be expected to have the major translational potential. Understanding why reperfusion occurs more readily in experimental animal models of RVO when compared with humans with this disorder may provide important clues for the development of new therapeutic interventions.

Conclusions

Several experimental animal models of RVO are available to study the pathogenesis and to test new diagnostic/prognostic/therapeutic interventions for this disease. Selecting the most appropriate ones, based on the information provided in this review, will allow researchers to better adhere to two of the three “Rs” of “reduction” and “refinement,” as “replacement” is not an option when understanding the complex events that take place in RVO. It will also help researchers in the development of new treatment modalities by allowing them to select those that mimic more closely the human disease, that develop its features more consistently and in shorter periods of time. This will subsequently reduce testing times and costs and will improve the planning and design of future, more successful studies as well as the potential for translation to clinical practice.

Acknowledgments

The authors thank Paul Canning for kindly providing the illustration for this manuscript.

Supported by the King Abdulaziz University and the Saudi Arabian Cultural Bureau in London (Grant Number R8384CEM), Elizabeth Sloan, and the Sir Jules Thorn Trust.

Disclosure: M. Khayat, None; N. Lois, None; M. Williams, None; A.W. Stitt, None

References


