Unstable Binocular Fixation Affects Reaction Times But Not Implicit Motor Learning in Dyslexia

Anna Przekoracka-Krawczyk,1,2 Alicja Brenk-Krakowska,1,2 Paweł Nawrot,1 Patrycja Rusiak,3 and Ryszard Naskręcki1

1Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
2Laboratory of Vision and Neuroscience, Nanobiomedical Centre, Adam Mickiewicz University, Poznań, Poland
3Department of Cognitive Psychology, University of Finance and Management, Warsaw, Poland

Correspondence: Anna Przekoracka-Krawczyk, Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-672 Poznań, Poland; ania_pk@amu.edu.pl.
Submitted: December 20, 2016 Accepted: November 17, 2017
Citation: Przekoracka-Krawczyk A, Brenk-Krakowska A, Nawrot P, Rusiak P, Naskręcki R. Unstable binocular fixation affects reaction times but not implicit motor learning in dyslexia. Invest Ophtalmol Vis Sci. 2017;58:6470–6480. DOI:10.1167/iovs.16-21305

Purpose. Individuals with developmental dyslexia suffer not only from reading problems as more general motor deficits can also be observed in this patient group. Both psychometric clinical tests and objective eyetracking methods suggest that unstable binocular fixation may contribute to reading problems. Because binocular instability may cause poor eye–hand coordination and impair motor control, the primary aim of this study was to explore in dyslectic subjects the influence of unstable binocular fixation on reaction times (RTs) and implicit motor learning (IML), which is one of the fundamental cerebellar functions.

Methods. Fixation disparity (FD) and instability of FD were assessed subjectively using the Wesson card and a modified Mallett test. A modified version of the Serial Reaction Time Task (SRTT) was used to measure the RTs and IML skills. The results for the dyslexic group (DG), which included 15 adult subjects (15 were tested binocularly, DGbin; 14 were tested monocularly, DGmono), were compared with data from the control group (CG), which consisted of 30 age-matched nondyslexic subjects (15 tested binocularly, CGbin; and the other 15 tested monocularly, CGmono).

Results. The results indicated that the DG showed poorer binocular stability and longer RTs in the groups tested binocularly (RTs: 534 vs. 411 ms for DGbin and CGbin, respectively; P < 0.001) as compared with the groups examined monocularly (RTs: 431 vs. 424 ms for DGmono and CGmono, respectively; P = 0.996). The DG also exhibited impaired IML when compared with the CG (EFIML: 25 vs. 50 ms for DG and CG, respectively; P = 0.012).

Conclusions. Unstable binocularity in dyslexia may affect RTs but was not related to poor IML skills. Impaired IML in dyslexia was independent of the viewing conditions (monocular versus binocular) and may be related to cerebellar deficits.

Keywords: binocular instability, cerebellum, developmental dyslexia, fixation disparity, implicit motor learning

Developmental dyslexia is a common specific reading disability in individuals, which occurs despite normal intelligence, adequate environment, and educational opportunities. It affects approximately 5% to 10%¹ of the population and is considered a life-long disorder. Individuals with dyslexia not only experience reading and writing problems but also more general motor and oculomotor deficits.²,³ The etiology of dyslexia remains unclear.

One of the most influential theories of dyslexia assumes that the disorder is directly and exclusively caused by a cognitive deficit specific to symbolic representations and the processing of speech sounds.⁴,⁵ The phonologic hypothesis claims that phonologic deficits (i.e., deficits in how words [printed letters] are uttered [relevant speech sounds]), cause reading difficulties in dyslectic individuals. However, the hypothesis fails to explain other nonlinguistic difficulties occurring in dyslexia, such as problems with postural stability⁶ or impaired visual processing (e.g., visuospatial attention⁷ or binocular instability⁸,⁹) that are common among dyslectic children and adults.

A contrary magnecellular hypothesis suggests that dyslexia might be caused by visual processing impairment rather than a linguistic problem¹²–¹⁴ and that reading problems arise from abnormal functions of the magnocellular visual pathway.¹⁵ This deficit is associated with low contrast sensitivity,¹⁶,¹⁷ impaired detection of motion,¹⁸,¹⁹ and poor eye movement coordination.²⁰–²³ Unstable binocular fixation and poor vergence control might induce symptoms, such as image blurring and/or unstable letters while reading.

The influence of oculomotor deficits in dyslexia is still under debate. There is growing evidence that indicates that unstable binocular fixation and saccade disconjugacy may disturb word identification and, in addition to the phonologic deficits, might interfere with fusion and the reading process. In general, studies show that dyslexic children need more fixations and regressions, as well as demonstrate longer saccade amplitudes than nondyslexic controls.²¹,²⁴ Eden et al.²⁰ demonstrated unstable fixation and impaired vergence control following saccadic eye movements in children with dyslexia. The idea that unstable binocular fixation may at least contribute to reading problems is confirmed by psychometric clinical tests¹¹ and the results of research using objective eyetracking methods.²²,²³,²⁵,²⁶
It seems that oculomotor deficits in dyslexia could be better explained by a cerebellar hypothesis, which assumes that dyslexic problems may arise from an impaired ability for motor learning and automatization process. The cerebellum is involved in movements executed automatically and implicit (procedural) motor learning (IML).\(^7\)\(^{-}\)\(^{33}\)\(^{-}\) IML refers to the process of gradual improvement of motor performance through practice without any knowledge of theoretical rules or conscious intention to learn. Studies have shown that cerebellar activity is high at the beginning of the acquisition phase and gradually decreases later in the process of learning a movement sequence.\(^33\)\(^{-}\)\(^{36}\) More evidence for the cerebellar phase and gradually declines in the learning process, associated with low supplementary motor area arousal, may suggest that dyslexic subjects have problems with building the internal model of movements, possibly due to cerebellar dysfunctions.\(^5\)

However, not all studies on motor learning have confirmed deficits in IML in dyslexic patients. For example, Kelly et al.\(^33\) found IML to be intact in adults with dyslexia. Howard et al.\(^44\) reported deficits in higher order IML but not in implicit learning of lower level spatial tasks. Inconclusive study results may be not only due to the differences in the sequential learning paradigm used but may also be related to the study subjects’ visual conditions. As it was mentioned before, dyslexic subjects exhibit poor oculomotor binocular coordination, arguably poor motor skills (longer RTs and poor IML), which could be related to the problems with unstable binocularity and fusion, but not necessarily with a motor deficit as such because all of the studies reviewed in this paper were performed under binocular conditions.

In the present study, SRTT was used for evaluation of the IML skills in young adults with dyslexia and to investigate the influence of unstable binocular fixation on motor performance (RTs). The authors expected that impaired binocular fixation would disturb RTs and IML but only when the test is performed binocularly. If IML was impaired in dyslexics because of cerebellar dysfunction, monocular procedures would not influence IML and/or RTs. Thus, both groups of dyslexic subjects (examined monocularly and binocularly) would demonstrate a lower IML skill than control subjects.

Materials and Methods

Optometric Examinations

Each subject was given an eye examination by an optometrist (one of the authors of this paper). The administered tests included: an interview (detailed case history), ocular dominance test (fixating through a hole), refractive error, monocular and binocular visual acuity at distance and near (Snellen’s letter chart) with prescription corresponding to the subject’s refractive error, amplitude of accommodation (push-up test), and monocular/binocular accommodative facility test (accommodative flipper ±2 diopters [D]). Binocular vision was examined using the following tests: alternating cover test with prism bar (phoria measured for both distance and near), Worth 4-dot test (suppression and the ability to fuse), and a Titmus stereotest (Stereo Optical Company, Inc., Chicago, IL, USA) for stereopsis. If all measurements were within normal limits, further tests for fixation disparity and fixation instability were administered. The study procedure is described further in this article.

Assessment of Literacy Skills and Cognitive Abilities

All dyslexic subjects had a documented history of developmental dyslexia confirmed by psychologists based on significant discrepancies between literacy skills and cognitive abilities. Despite the documented history of developmental dyslexia, cognitive abilities of the study subjects were investigated by the research team using the Raven’s progressive matrices test.\(^45\) Reading and spelling abilities were measured with word-chain and sentence-chain tests\(^46\) as well as the Polish adaptation of the Test of Word Reading Efficiency (the rate of word and nonword reading test).\(^47\) To evaluate the ability to segment and manipulate phonemes the subjects were given a Polish adaptation of the Spoonerism task.\(^49\)

The difference in cognitive ability between the study groups (dyslexic group [DG] versus control group [CG]) was nonsignificant ($P = 0.454$). However, the dyslexic subjects needed more time to perform the literacy and phonologic tasks and they made more errors than controls (see Table 1).

Subjects

Young adult volunteers, all native Polish speakers, were recruited among the faculty students of Adam Mickiewicz University in Poznan (68 subjects in total). Based on an interview, all subjects were healthy without any neurological or musculoskeletal disorders. None of the subjects were taking medication, which could affect their attention or RT. Subjects with any ocular pathology or strabismus were not included in the study.

After the optometric and reading ability tests, subjects were assigned either to the DG or CG. All subjects had at least normal visual acuity (or corrected to normal) at distance and near (logMAR ≤ 0.00). None of the subjects exhibited suppression or diplopia at near (Worth 4-dot test) and all measured at least 50 seconds of arc in stereopsis test. The majority of phorias at near for both groups were in the
exodirection (−2 Δ vs. −2.4 Δ, for DG and CG, respectively). Phoria measurement was similar in both (DG and CG) groups (P = 0.480).

Next, the subjects were tested for fixation disparity (FD) and SRTT. To determine the actual IML skill level using SRTT, each subject was allowed to test the only once in order to avoid detection of the hidden sequence. Thus, DG and CG subjects were randomly assigned to subgroups: either performing the SRTT monocularly with the dominant eye (DGmono and CGmono) or binocularly (DGbin and CGbin). The researcher assigning the subjects to the above subgroups was unaware of the results of the FD test administered earlier. The results obtained from SRTT were analyzed further only if the participant was unable to explicitly detect the order of the sequence hidden in the SRTT. If a participant detected the sequence, he/she was excluded from the analysis and a new participant was recruited. This procedure was repeated until 15 participants in each of group completed the task without explicit detection of the sequence. Overall, nine participants were excluded from the analysis as they detected the sequence explicitely (3 subjects from DG and 6 from CG). As numerous volunteers without reading problems were available, the researchers managed to collect two nondyslexic groups; however, 14 participants were included in one of the dyslexic subgroups. Finally, the data from a total of 59 subjects was analyzed.

Table 1. Characteristics of Study Subjects: Literacy Skills, Phonological Skills, and Cognitive Ability

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dyslexics, N = 29</th>
<th>Controls, N = 30</th>
<th>Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raven test (standard score)</td>
<td>92.1</td>
<td>91.4</td>
<td>−0.75; NS</td>
</tr>
<tr>
<td>Word-chain: time, s</td>
<td>118.1</td>
<td>75.9</td>
<td>−6.59*</td>
</tr>
<tr>
<td>Word-chain: errors</td>
<td>0.6</td>
<td>0.1</td>
<td>−3.98*</td>
</tr>
<tr>
<td>Sentences-chain: time, s</td>
<td>130.1</td>
<td>93.7</td>
<td>−6.36*</td>
</tr>
<tr>
<td>Sentences-chain: errors</td>
<td>1.3</td>
<td>0.1</td>
<td>−3.60*</td>
</tr>
<tr>
<td>Rate of word reading (mean correct/30 s; max = 75)</td>
<td>56.4</td>
<td>69.4</td>
<td>6.60*</td>
</tr>
<tr>
<td>Rate of word reading: errors</td>
<td>0.5</td>
<td>0.1</td>
<td>−3.79*</td>
</tr>
<tr>
<td>Rate of non-word reading (mean correct/30 s; max = 69)</td>
<td>30.3</td>
<td>44.5</td>
<td>6.58*</td>
</tr>
<tr>
<td>Rate of non-word reading: errors</td>
<td>1.5</td>
<td>0.9</td>
<td>−2.50*</td>
</tr>
<tr>
<td>Spoonerism: time, s</td>
<td>161.6</td>
<td>107.7</td>
<td>−4.35*</td>
</tr>
<tr>
<td>Spoonerism: errors</td>
<td>5.7</td>
<td>2.3</td>
<td>−5.01*</td>
</tr>
<tr>
<td>Correct writing: time, s/orthographic skills/</td>
<td>193.3</td>
<td>121.6</td>
<td>−6.37*</td>
</tr>
<tr>
<td>Correct writing: errors/orthographic skills/</td>
<td>8.7</td>
<td>2.9</td>
<td>−5.96*</td>
</tr>
</tbody>
</table>

NS, nonsignificant.
* P < 0.001.
† P < 0.05.

Poland. The presence of FD was evaluated using a modified near “OXO” Mallett Fixation Disparity Test (STOP Fixation Disparity Test by Grand Optica, Sopot, Poland; similar to the test used by Karania and Evans59) and a Wesson card. Each test was able to show a different aspect of binocular instability. With Mallett test, with a strong central fusion lock, less motor, and more sensory instability can be expected but with Wesson card the lack of central fusion may stimulate difficulty in maintaining stable fixation, and thus provoking a higher motor instability.

Each FD assessment was preceded by reading several words printed on the modified Mallett test and several other words on both sides of the central polarized area of the Wesson card. This ensured an appropriate accommodative response. During the modified Mallett test FD was registered as “0” when no FD was found or “1” if FD was identified. The amount of FD found using the Wesson card was recorded in minutes of arc. All measurements were repeated three times and averaged.

During FD assessment the subjects were also asked if they had noticed any instability. The instability of FD response was evaluated both with the modified Mallett test and the Wesson card. Each subject was asked to report if the lines/arrow moved and/or the targets faded periodically. Fixation instability was estimated in the same way as in our previous research in three categories: motor instability (targets moved), sensory instability (targets faded away), and sensory–motor instability (targets moved and faded away periodically), as proposed by Evans et al.11

The Main Experiment: Implicit Motor Learning. In order to investigate motor learning ability, the researchers used a variation of the SRTT. The same test was used in the authors’ previous study on strabismic subjects. A detailed description of the stimuli and procedure is discussed later in this paper. In brief, the study subjects were asked to indicate the position of a target (black X; size 0.38°) that could occur in one of four green squares (the size of each square was 1.9° with 0.49° separation between them) presented on a liquid-crystal display screen. The subjects responded by pressing one of four corresponding keys as quickly and accurately as possible with one of four predetermined fingers.

The target was displayed in two sequences: (1) sequence 1: 121342314324 (numbers corresponded to the four possible positions on the screen), and (2) sequence 2: 424312431321. Sequence 1 was displayed in blocks 1 to 11...
and block 13 while sequence 2 was presented in block 12. Each sequence was presented 10 times in each block. RTs and error rates in response to the X position were analyzed. The order of the blocks allowed the researchers to observe the process of IML. If the subject implicitly learned the order of the sequence, then his/her RT’s in blocks with sequence 1 should have gradually decreased with respect to the first block, and should have increased when the block with new sequence was displayed (block 12), with RTs again returning to the earlier level on block 13 with the previous sequence. To assess IML skills, the effect of implicit motor learning (EFIML) was calculated based on the difference between the RT on block 12 and the average RT on blocks 11 and 13, according to the following equation: $\text{EFIML} = \text{RT}_{\text{block12}} - \frac{\text{RT}_{\text{mean block11&13}}}{2}$. The higher EFIML, the better the IML skills.32,38,39 As mentioned earlier, test results were taken for further analysis only if the subject had not identified the sequence in the main experiment (he/she had not learned the sequence explicitly/consciously).

SRTT was administered in groups that viewed monocularly using the right eye (with the left eye occluded: DG\textsubscript{mono} and CG\textsubscript{mono}) or binocularly (DG\textsubscript{bin} and CG\textsubscript{bin}).

Statistical Analyses

Statistical analyses were performed using Statistica Software (ver. 10; StatSoft Polska, Cracow, Poland). The parameters with normal distribution (RTs, EFIML) were analyzed using parametric tests: ANOVA with repeated measurements within factors: (1) group: DG versus CG, and (2) visual condition: monocular versus binocular. Additionally, EFIML was compared with zero value using the Student’s t-test to check if the EFIML was significantly higher than zero for each group.

The other parameters were analyzed with the Mann-Whitney U test (error rates, FD measured with the Wesson card) because distributions were not normal. Moreover, if the variables were categorical (assessed on a nominal scale: occurrence of FD during modified Mallett test, instability of the variables were categorical (assessed on a nominal scale: card) because distributions were not normal. Moreover, if the P value was equal to 0.05 or less.

RESULTS

Fixation Disparity: Amount and Instability

Manifestation of FD on the modified Mallett test and on the Wesson card is presented in Figure 1 and Table 2. FD values in minutes of arc measured with the Wesson card are shown in Figure 2.

FD measured using a strong central fusion lock (modified Mallett test) was found in more than 40% (41%; $n = 12$) of dyslexic subjects and only in 20% ($n = 6$) of control subjects. Statistical analysis however showed that this difference was nonsignificant ($P = 0.134$). When comparing groups that viewed monocularly or binocularly, no significant differences in FD were found either between DG\textsubscript{mono} and DG\textsubscript{bin} (43% vs. 40%, respectively, $P = 0.651$) or between CG\textsubscript{mono} and CG\textsubscript{bin} (27% vs. 13%, respectively, $P = 0.051$). Also, the researchers did not find statistically significant differences in FD neither between groups DG\textsubscript{mono} and CG\textsubscript{mono} (43% vs. 27%, respectively, $P = 0.450$) nor DG\textsubscript{bin} and CG\textsubscript{bin} (40% vs. 13%, respectively, $P = 0.215$).

FD measured with weak central fusion lock (Wesson card) was found in more than 70% (72%; $n = 21$) of dyslexic subjects but only in 30% ($n = 9$) of control subjects. Statistical analysis showed that this difference was significant ($Z = 8.98, P = 0.002$). When comparing groups that viewed monocularly or binocularly, no significant differences in the incidence of FD were identified either between DG\textsubscript{mono} and DG\textsubscript{bin} (71% vs. 73%, respectively, $P > 0.999$) or between CG\textsubscript{mono} and CG\textsubscript{bin} (33% vs. 27%, respectively, $P > 0.999$). However, in the mono group the researchers observed a tendency among dyslexic subjects (DG\textsubscript{mono}) to experience FD more often than controls (CG\textsubscript{mono}) (71% vs. 35%, respectively, $P = 0.066$). In binocular condition groups, FD occurred more often in DG\textsubscript{bin} than in CG\textsubscript{bin} (75% vs. 27%, respectively, $P = 0.027$).

The median value of FD (Wesson card) was higher in the exodirection in the DG as compared with the CG ($−2.2$ min of arc; SE = 2.2 vs. 0.0 min of arc, SE = 1.5, for DG and CG, respectively; $Z = −3.31, P < 0.001$). Moreover, in the DG\textsubscript{bin}, the median value of FD was $−4.0$ min of arc (SE = 1.5) while in the CG\textsubscript{bin} it was 0.0 min of arc (SE = 0.4). The difference was statistically significant ($Z = −3.31, P = 0.002$). When comparing DG\textsubscript{mono} with CG\textsubscript{mono}, there was a tendency for a higher exo-FD in the DG\textsubscript{mono} than in the CG\textsubscript{mono} ($−2.2$ min of arc, SE = 4.3 vs.

Unstable Binocularity and Motor Learning in Dyslexia
FIGURE 1. Manifestation of FD during modified Mallett test (left) and Wesson card test (right). The incidence of FD in all dyslexics and control groups is shown on the left. The incidence of FD in mono and bin groups is presented in the middle and on the right, respectively. *$P < 0.05$; **$P < 0.01$. NS, nonsignificant, *NS, nonsignificant tendency.
Table 2. Incidence of Binocular Fixation Problems for Each Group (Separately)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Subject</th>
<th>Modified MALLETT Test</th>
<th>WESSON Test</th>
<th>Occurrence of Binocular Fixation Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONO</td>
<td>DM1</td>
<td>0 0</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM2</td>
<td>1 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM3</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM4</td>
<td>1 0</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM5</td>
<td>0 0</td>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM6</td>
<td>1 1</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM7</td>
<td>1 0</td>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM8</td>
<td>0 1</td>
<td>0 0</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM9</td>
<td>0 1</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM10</td>
<td>1 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM11</td>
<td>0 0</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM12</td>
<td>1 1</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM13</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>DM14</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>MONO</td>
<td>ALL</td>
<td>6 9</td>
<td>10 11</td>
<td>14</td>
</tr>
<tr>
<td>BIN</td>
<td>DB1</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB2</td>
<td>1 1</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB3</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB4</td>
<td>1 1</td>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB5</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB6</td>
<td>1 1</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB7</td>
<td>1 1</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB8</td>
<td>0 0</td>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB9</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB10</td>
<td>1 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB11</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB12</td>
<td>1 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB13</td>
<td>0 1</td>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB14</td>
<td>0 0</td>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>DB15</td>
<td>0 1</td>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>BIN</td>
<td>ALL</td>
<td>6 10</td>
<td>11 11</td>
<td>15</td>
</tr>
</tbody>
</table>

Modified MALLETT Test

WESSON Test

Occurrence of Binocular Fixation Problem

S-M, sensory-motor.
0.0 min of arc, SE = 2.7, for DG and CG respectively; $Z = -1.75$, $P = 0.080$).

There was a difference in motor instability (modified Mallett test) between the DG and the CG. Less than 25% of the DG subjects and none of the CG subjects exhibited motor instability (24.1% vs. 0.0%; $P = 0.005$). Sensory instability also occurred more often in the DG than in the CG (55.2% vs. 20.0%; $\chi^2 = 6.36$, $P = 0.012$). Again, there was a difference in sensory-motor instability between the two study groups. Instability response was detected in more than 65% of DG subjects but only in 20% of the CG subjects (65.5% vs. 20.0%; $\chi^2 = 10.72$, $P = 0.001$).

Dyslexic subjects also exhibited unstable response in the Wesson card test. A higher number of dyslexic subjects showed motor instability (69%). Motor instability was also identified among some control subjects (almost 17%) and the difference was significant ($\chi^2 = 14.44$, $P < 0.001$). Sensory instability was similar in both groups as only 6.7% from the DG (2 subjects) and no subject from the CG reported fading of the targets ($P = 0.237$). Sensory-motor instability occurred more often in the DG than in the CG (75.9% vs. 16.7%; $\chi^2 = 18.50$, $P < 0.001$). All of the above data is presented in Figure 3.

Figure 2. Median value of FD obtained with a Wesson card. The incidence of FD in all dyslexics and all control groups is shown on the left. The incidence of FD is shown in the middle and on the right, separately for the mono and bin group, respectively. The vertical bars indicate the standard error. *$P < 0.05$; **$P \leq 0.01$; ***$P \leq 0.001$.

Figure 3. Instability of response observed using the modified Mallett test (left) and Wesson card (right). *$P < 0.05$; **$P \leq 0.01$; ***$P \leq 0.001$.

Figure 4. Reaction times recorded during SRTT. The results recorded in the monocular condition groups (mono) are shown on the top graph and the results for the binocular condition groups (bin) are shown on the bottom graph. The vertical bars indicate the standard error.

SRTT: Reaction Times

The results of RTs obtained from the SRTT are presented in Figure 4.

Mean RT from blocks 1 to 11, where sequence 1 was displayed, was higher in the DG than in the CG (484 vs. 418 ms, for DG and CG, respectively, see Fig. 5). This was confirmed by a significant main effect of the group ($F_{1,55} = 10.23$, $P = 0.002$, $\chi^2 = 0.16$). RTs were related also to the visual condition (monocular versus binocular). Here, mean RTs were shorter in the group, which viewed monocularly as compared with the binocularly viewing group (427 vs. 472 ms, for monocular and binocular, respectively; $F_{1,55} = 4.95$, $P = 0.030$, $\chi^2 = 0.08$). However, the RTs were related to the visual condition only for DGs but not for CGs, which was suggested...
by significant group × visual condition interaction (F1,55 = 8.23, P = 0.006, χ² = 0.13). This interaction indicated that DGbin demonstrated a large increment in RTs when viewing with both eyes, compared with DGmono (534 vs. 431 ms, for DGbin and DGmono, respectively). Post hoc test: P = 0.005). In the CG, no influence of visual condition was observed (424 vs. 411 ms, for CGmono and CGbin, respectively; P = 0.967). Post hoc tests between conditions showed also that RTs were different between groups only when viewing binocularly (P < 0.001) but not monocularly (P = 0.996).

SRTT: Error Rates

As can be seen in Figure 6, error rates for the first 11 blocks, where sequence 1 was displayed, were had similar values in both groups (0.02 vs. 0.03 for DG and CG, respectively; Z = 1.39, P = 0.163) and for both visual conditions (0.03 vs. 0.02 for monocular and binocular, respectively; Z = 1.79, P = 0.074).

However, when compared the experimental groups separately, it was found that in the DGbin error rates were higher than in the DGmono (0.04 vs. 0.01, respectively; Z = 3.39, P < 0.001). The influence of binocular viewing was not observed in the CGs (0.03 for CGmono and 0.04 for CGbin; Z = 1.29, P = 0.199). Additionally, the difference in error rates between DGbin vs. CGbin as well as between DGmono versus CGmono was not statistically significant (P > 0.050).

SRTT: Implicit Motor Learning

As can be seen in Figure 4, the RTs changed in both study groups when a new sequence (sequence 2) was presented in block 12: mean RTs increased in the CG by 50 ms and by 25 ms in the DG (see Fig. 7). When comparing EFIML with zero value, it was noticed that dyslexic and control groups learned the sequence implicitly, which was reflected by EFIML being significantly higher than zero for both the DG and the CG (t28 = 5.29, P < 0.001 for the DG; t90 = 6.20, P < 0.001 for CG). Despite the retained IML ability in both groups, the mean EFIML was significantly lower in the DG than in the CG, and was confirmed by the significant effect of the group (F1,55 = 6.78, P = 0.012, χ² = 11.1). The EFIML was not associated with visual condition, as indicated by the nonsignificant mean effect of the visual condition (F1,55 = 0.79, P = 0.577, χ² = 0.01), as well as the lack of a group × visual condition interaction (F1,55 = 0.18, P = 0.670, χ² = 0.01).

The EFIML was found in RTs but not in error rates but no significant differences between the groups or visual conditions were observed (χ² = 4.41, P = 0.220).

Discussion

The purpose of the present study was to investigate the relationship between unstable binocular fixation and motor performance (RT and IML) in dyslexic subjects. Based on the previous research that demonstrated poor binocular coordination and vergence eye movements in subjects with developmental dyslexia, the authors assumed that impaired binocular visual skills might disturb the processing of visual information leading to slower motor responses of the hands/fingers. The obtained results showed that subjects with
dyslexia have poorer motor responses, related to both binocular instability and poor IML, which is independent of binocularity. Each aspect will be discussed below.

Unstable Binocular Fixation

First, the discussed study confirmed the previous observation (i.e., a higher prevalence of unstable binocular fixation in dyslexic subjects). Studies have shown that dyslexic children show a more unstable coordination of both eyes (higher variability of fixation disparity) when measured with both subjective and objective methods. Jaschinski et al. reported an increased variability of FD in children with reading disability and writing impairment when using psychophysical methods. In the study by Brenk-Krakowska et al. unstable fixation was found in dyslexic adults using the Wesson card. Dyslexic subjects exhibited higher motor instability but showed no difference in sensory instability. Similar findings were obtained in this study, that is, higher motor instability in dyslexic subjects (almost 70% of dyslexics) and no sensory instability. Probably the lack of central fusion lock in the dyslexic subjects (almost 70% of dyslexics) and no sensory instability were obtained in this study, that is, higher motor instability in decoding could have impaired the control of eye movements.

Can argue that poor binocular coordination during reading was the case, statistically significant differences between a sentence and a dot stimuli could cause fusional difficulties, resulting in more difficult ocular scanning during text reading as compared with dot scanning. In our study, a simple non-text target scanning and slower RTs were observed in dyslexic subjects under binocular viewing conditions. This observation demonstrates that unstable binocular fixation in dyslexia may disturb motor and oculomotor performance, not only while reading a text but also in a simpler nontext task.

How can one explain the lack of FD in dyslexic subjects during simple fixation or dot scanning found by some researchers? One possibility may be a compensatory mechanism where motor disabilities are compensated by attentional resources. Similar compensation was found in subjects with dyslexia during body balance measurements. Their body balance was worse when an additional concurrent task was employed during quiet standing. It is possible that dyslexic individuals' oculomotor deficits could be difficult to detect in simple scanning paradigm because of the aforementioned compensation. However, when a more complex task involving attentional resources is required, the actual oculomotor deficits could be detected. In our study, eye movements were simple but the subjects had to show an additional motor response adequate to the location of the stimulus in space. Thus, the paradigm used in the current study was more complex and it is possible that oculomotor deficits were well compensated.

Unstable Binocular Fixation and Motor Performance (RT and IML)

Most importantly, the researchers have observed poor motor performance in dyslexic subjects (slow RTs) during SRTT but only when the test was performed binocularly. Longer RTs in dyslexic subjects compared with controls were observed also in the studies by Nicolson et al., Kelly et al., Vicari et al., and were explained by the deficits in paired-associate learning. A significant increase in RTs in this study occurred only when viewing with both eyes (534 vs. 411 ms for DG and CG, respectively) but not when viewing with one eye (431 vs. 424 ms for DG and CG, respectively). It suggests that poor motor performance was associated with unstable binocularity during a motor task. This finding supports the view that poor binocular coordination in dyslexia may affect fusion and motor performance. In everyday tasks, unstable binocular coordination may also affect reading skills (decoding of the stimuli required in order to read) as well as motor performance and poor eye-hand coordination, as reported in other studies.

Viewing condition affected RTs, but also partially error rates in the way that DGbin performed less errors than DGmono. One could argue, that longer RTs were a cost of fewer errors. If this were the case, statistically significant differences between DGbin and CGbin should also occur then, but it was not found. It is also possible that small difference in error rates (3%) could influence huge difference in RTs (24% of response speed). Lower error rates could arise also from the possibility that when the DGbin performs the task binocularly it is more difficult and requires more concentration.

Despite the significant influence of unstable binocularity on the RTs, no such relationship exists in our study between binocular viewing and sequential implicit motor learning. Dyslexics, similar to controls, gradually decreased their RTs from block to block and increased RTs when new sequence
Limitation of the Study and Future Direction

In the present study, the researchers did not monitor eye movements objectively but based their observations on subjectively reported FD and its instability. In the future, it might be worth considering eye-tracking measurements both during psychometric (subjective) FD test and IML experiment. One should be aware that measuring FD and its stability by eye trackers is a great challenge. Appropriate measurement protocol should therefore be developed.

Because binocular instability seems to occur more often in dyslexic than nondyslexic individuals, the above findings should be taken into consideration in future oculomotor and motor studies. Further investigation of dyslexic subjects’ performance should exclude unstable binocular vision. VISUOMOTOR STUDIES. Further investigation of dyslexic subjects’ performance should exclude unstable binocular vision.

