RGC Neuroprotection Following Optic Nerve Trauma Mediated By Intranasal Delivery of Amnion Cell Secretome

Gabriela A. Grinblat, 1 Reas S. Khan, 2 Kimberly Dine, 2 Howard Wessel, 3 Larry Brown, 3 and Kenneth S. Shindler 2

1 Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
2 Scheie Eye Institute and E.M. Kirby Center for Molecular Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
3 Noveome Biotherapeutics, Inc., Pittsburgh, Pennsylvania, United States

Correspondence: Kenneth S. Shindler, E.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania, Scheie Eye Institute, Stellar-Chance Laboratories, 3rd Floor, 422 Curie Boulevard, Philadelphia, PA 19104, USA; Kenneth.Shindler@uphs.upenn.edu.
Submitted: February 14, 2018
Accepted: April 3, 2018

Citation: Grinblat GA, Khan RS, Dine K, Wessel H, Brown L, Shindler KS. RGC neuroprotection following optic nerve trauma mediated by intranasal delivery of amnion cell secretome. Invest Ophthalmol Vis Sci. 2018;59:2470-2477. https://doi.org/10.1167/iovs.18-24096

PURPOSE. Intranasally delivered ST266, the biological, proteinaceous secretome of amnion-derived multipotent progenitor cells, reduces retinal ganglion cell (RGC) loss, optic nerve inflammation, and demyelination in experimental optic neuritis. This unique therapy and novel administration route delivers numerous cytokines and growth factors to the eye and optic nerve, suggesting a potential to also treat other optic neuropathies. Thus, ST266-mediated neuroprotection was examined following traumatic optic nerve injury.

METHODS. Optic nerve crush injury was surgically induced in C57BL/6J mice. Mice were treated daily with intranasal PBS or ST266. RGC function was assessed by optokinetic responses (OKRs). RGCs were counted, and optic nerve sections were stained with luxol fast blue and anti-neurofilament antibodies to assess myelin and RGC axon damage.

RESULTS. Intranasal ST266 administered daily for 5 days, beginning at the time that a 1-second optic nerve crush was performed, significantly attenuated OKR decreases. Furthermore, ST266 treatment reduced damage to RGC axons and myelin within optic nerves, and blocked RGC loss. Following a 4-second optic nerve crush, intranasal ST266 increased RGC survival and showed a trend toward reduced RGC axon and myelin damage. Ten days following optic nerve crush, ST266 prevented myelin damage, while also inducing a trend toward increased RGC survival and visual function.

CONCLUSIONS. ST266 significantly attenuates traumatic optic neuropathy. Neuroprotective effects of this unique combination of biologic molecules observed here and previously in optic neuritis suggest potential broad application for preventing neuronal damage in multiple optic nerve disorders. Furthermore, results support intranasal delivery as a novel, noninvasive therapeutic modality for eyes and optic nerves.

Keywords: traumatic optic neuropathy, retinal ganglion cells, neuroprotection, ST266, amnion cell–derived therapy, intranasal drug delivery

Traumatic optic neuropathy 1 can result from direct optic nerve injury in penetrating orbital trauma, but more commonly occurs indirectly due to optic nerve stretching from blunt head trauma. Traumatic optic neuropathy is one of the leading types of ocular injury sustained in military combat, 2,3 as well as noncombat traumatic brain injury, in which 60% of traumatic head injuries result in neuro-ophthalmic abnormalities, 4 with 50% of those involving the optic nerves or visual pathways. Traumatic optic nerve injury can result in retinal ganglion cell (RGC) axonal damage and irreversible RGC loss with permanent visual deficits. Medical and surgical treatments have all failed to improve outcomes, and some treatments carry significant risks. 1,5 Thus, novel neuroprotective therapies are needed to prevent neuronal damage and loss of vision following optic nerve trauma.

ST266 (formerly amnion-derived cellular cytokine solution; ACCS) is the biological proteinaceous, secretome of a novel population of cells called amnion-derived multipotent progenitor (AMP) cells that contains physiologic levels of multiple growth factors and cytokines that can stimulate a variety of anti-inflammatory and neuroprotective responses in human cells. 6,7 Intranasal delivery results in rapid accumulation of high levels of proteins from ST266 in the eye and optic nerve, and prevents visual dysfunction, RGC loss, and inflammation in an animal model of optic neuritis, an inflammatory disorder of the optic nerve. 8 Detection of ST266 proteins in the eye and optic nerve within 30 minutes after intranasal administration suggests that proteins gain direct access into the central nervous system and are transported locally, 9 representing a novel delivery method to target the eye that does not depend on systemic vascular absorption through the nasal mucosa. The combination of cytokines and growth factors present in ST266 suggests that it exerts effects by multiple mechanisms, but it remains unknown whether effects of ST266 in optic neuritis are due mainly to suppression of inflammation, direct neuroprotection of RGCs, or perhaps both. Interestingly, one pathway upregulated by ST266 in experimental optic neuritis involves the SIRT1 deacetylase. 10 When activated, SIRT1 deacetylase has previously been shown to prevent RGC loss and preserve vision in both optic neuritis 11,12 and traumatic optic nerve injury. 13 Common
features of RGC neuroprotection mediated by both ST266 and SIRT1 activators in experimental optic neuritis include reduction of oxidative stress,8–12 a conserved mechanism of neuronal cell loss that also occurs in models of traumatic optic neuropathy.14–16

We hypothesized that ST266 can provide direct neuroprotective effects on RGCs following traumatic injury due to the multiple growth factors and cytokines present in ST266 and their upregulation of SIRT1 and suppression of oxidative stress. Furthermore, the noninvasive intranasal delivery of ST266 represents a potential novel method to target complex protein therapies to the optic nerve to promote effective treatment of optic nerve injury. Surgical optic nerve crush was performed on one eye of young adult C57BL/6j mice. Mice were treated daily with intranasal ST266 or PBS, and RGC function, RGC damage, and myelin damage were assessed.

METHODS

Mice

Seven- to 8-week-old C57BL/6j wild-type mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and were housed at an animal facility at the University of Pennsylvania. Care and treatment of the animals, as well as all performed procedures, were conducted in accordance with the guidelines for the Institutional Animal Care and Use Committee at the University of Pennsylvania, and adhered to the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.

Optic Nerve Crush

Optic nerve crush (ONC) was performed on 8- to 12-week-old C57BL/6j wild-type mice as in our prior studies,1 with minor modifications as described. Mice were anesthetized systemically with xylazine and ketamine and topically with 0.5% proparacaine eye drops. Under a dissecting microscope, the conjunctiva was lifted with fine forceps and cut using scissors, exposing the sclera. Forceps were used to manipulate and retract orbital fat and muscles, allowing for exposure of the optic nerve. Injury to the optic nerve was induced using curved fine-tip forceps to induce a focal crush injury to the optic nerve approximately 1 to 2 mm behind the globe. Maximal pressure was used to close the forceps for either 1 second or 4 seconds, as indicated in each experiment. Use of fine-tip forceps facilitated avoidance of orbital vessels, in an attempt to avoid ocular ischemia. Bleeding during the procedure was categorized as none, minimal, moderate, and large. Mice were excluded for more than moderate bleeding. In each experiment, the ONC was performed in one eye only, allowing the contralateral uninjured eye to serve as a control.

ST266 Treatment

ST266 was provided by Noveome Biotherapeutics, Inc. (Pittsburgh, PA, USA) and administered intranasally similar to prior studies.8 ST266 was shipped in aliquots on dry ice and stored at −20°C before use. Fresh aliquots were thawed and refrigerated, and were warmed to room temperature for treatment each day. Mice were randomized to treatment groups and treated with a single 20-μL drop of either undiluted ST266 or PBS delivered intranasally once daily; 20-μL drops were used, as this was the maximum volume that could be consistently administered into the nares without excess fluid draining outside the nose. Treatment began immediately after ONC and mice were treated once daily until they were killed.

RGC Labeling and Quantification

RGC immunolabeling and counting was performed as previously described.8 In summary, eyes were removed immediately after mice were killed and fixed with 4% paraformaldehyde (PFA). Retinas were carefully dissected and whole-mounted flat on prelabeled glass slides. They were then washed with PBS and permeabilized with 0.5% Triton X-100 in PBS at −70°C. The retinas were then thawed and rewarshed with the 0.5% Triton X-100 solution, and incubated overnight with goat anti-BrdU antibody (RGC marker) antibody from Santa Cruz Biotechnology (Dallas, TX, USA), which was diluted 1:100 with blocking buffer (PBS containing 2% BSA and 2% Triton X-100). The retinas were then washed in PBS three times, and incubated with Alexa Fluor 488 anti-goat secondary antibody diluted 1:500 in the blocking buffer solution for 1 hour, then washed with PBS four to five times. The retinas were then mounted with vectashield mounting medium for fluorescence. RGCs were photographed at a magnification of ×40 in 12 standardized fields at one-sixth, three-sixths, and five-sixths of the retinal radius from the center of the retina in four quadrants. A blinded investigator counted RGCs in each field using Image-Pro Plus 5.0 (Media Cybernetics, Silver Spring, MD, USA) software.

Optokinetic Responses (OKRs)

OKR was used as a measurement of visual function in the mice before and after ONC injuries. OKR was assessed using OptoMotry software and equipment (Cerebral Mechanics, Inc., Medicine Hat, AB, Canada) as described in previous studies.17 OKR function is measured by determining the highest frequency at which mice are able to track a 100% contrast grid, projected at different spatial frequencies. Data are reported in units of cycles/degree.

Myelin Staining

Demyelination of the optic nerve was assessed by methods outlined in a previous publication, through staining with luxol fast blue (LFB).8 After mice were killed, optic nerves were isolated and fixed in 4% PFA, then embedded in paraffin and cut longitudinally into 5-μm sections. The optic nerve sections were mounted, deparaffinized using a heating block, and
rehydrated. Sections were then stained with LFB, and the relative amount of staining was quantified for relative demyelination using a 0- to 3-point scale by a blinded investigator, where 0 = no demyelination, 1 = scattered small focal areas of demyelination, 2 = prominent areas of demyelination, and 3 = large confluent areas of demyelination.

Neurofilament Staining

Neurofilament (NF) staining was performed and quantified in accordance with previously published methods.\(^8,12\) Deparaffinized, rehydrated optic nerve sections were incubated with blocking solution from Vectastain Elite ABCkit (Vector Laboratories, Burlingame, CA, USA) in PBS, then incubated overnight at 4°C using a primary rabbit anti-neurofilament antibody (AbCam, Cambridge, UK) diluted 1:100 with PBS. The sections were then washed four times in PBS and incubated with goat biotinylated anti-rabbit secondary antibody (Invitrogen, Carlsbad, CA, USA) for 1 hour at 37°C. The sections were then washed with PBS four times and incubated with ABC reagent using the Vectastain Elite ABC kit. The sections were then developed with DAB (diaminobenzidine) substrate from the DAB substrate kit (Vector Laboratories). Sections were placed in a running water bath to stop the DAB reaction, then dehydrated and mounted using Refrax mounting medium. The NF-stained sections were then photographed by a blinded investigator using a standard exposure at three distinct fields within each nerve, at the distal, central, and proximal regions.

Figure 2. ST266 reduces RGC axon loss. Mice (n = 6 mice/treatment group) were treated daily with one intranasal drop of ST266 or sham-treated with PBS beginning immediately after 1-second ONC was performed on the right eye only. Retinas and optic nerves were removed 5 days post-ONC. (A) ONC induced significant RGC loss, measured by Brn3a labeling, as compared with control eyes in retinas of PBS-treated mice (*P < 0.05). In contrast, RGC numbers were not significantly decreased compared with control eyes in ST266-treated mice, but showed only a trend toward increased RGC numbers compared with ONC eyes from PBS-treated mice. (B) Representative images (original magnification ×10) of RGCs from each group are shown. (C) ONC induced a significant decrease in RGC axon immunostaining with neurofilament antibodies as compared with control eyes in optic nerves of PBS-treated mice (**P < 0.001), and RGC axon staining was significantly higher in ONC eyes of ST266-treated mice compared with ONC eyes from PBS-treated mice (***P < 0.001). (D) A collage of images (original magnification ×40) of optic nerves from each group show variable neurofilament staining in ONC eyes reflective of focal areas of axon loss. Data from one of two experiments shown.
ST266 Neuroprotection in Optic Nerve Crush

Intranasal ST266 Improves Visual Function and Reduces Optic Nerve Damage Induced by ONC

The right optic nerves of adult C57BL/6j mice were surgically exposed and briefly crushed with fine-tipped forceps for 1 second to induce a focal but significant axonal injury. Left eyes served as controls. Beginning immediately after ONC, mice were treated with an intranasal drop (20 μL) of either ST266 or PBS. ONC induced a severe decrease in OKR responses, measured daily over the next 5 days, that was significantly attenuated in mice treated with ST266 as compared with those treated with PBS (Fig. 1).

Mice were euthanized 5 days post-ONC, and retinal RGC numbers as well as axonal integrity of RGC axons in the optic nerve were quantified. ONC eyes from PBS-treated mice had significantly decreased numbers of surviving RGCs compared with control, non-ONC eyes (Figs. 2A, 2B). In contrast, RGC numbers were not significantly decreased in ONC eyes from mice treated with ST266, compared with control eyes, although ST266 did not increase RGC survival significantly compared with PBS-treated ONC eyes. Loss of RGC axon staining in ONC crush eyes of PBS-treated mice was significantly attenuated by ST266 treatment (Figs. 2C, 2D).

Examination of myelin staining along optic nerves showed significant loss of myelin induced by ONC in PBS-treated mice as compared with control, noncrush eyes (Fig. 3). Although ONC also induced significant demyelination in ST266-treated mice, the level of demyelination was significantly lower than that induced in PBS-treated mice with ONC injury.

ST266 itself had no effect on healthy optic nerves, as there was no significant difference between control (non-ONC) eyes from PBS-treated versus ST266-treated mice in the number of RGCs (Figs. 2A, 2B), axon staining (data not shown), or demyelination score (data not shown).

Intranasal ST266 Exerts Partial Neuroprotective Effects Induced by More Severe ONC Injury

Initial results shown above indicate intranasally delivered ST266 can preserve visual function and reduce histopathologic damage induced by brief yet harsh optic nerve trauma. To determine whether these neuroprotective effects can be mediated in response to a more severe optic nerve injury, the right optic nerves of adult C57BL/6j mice were surgically exposed and crushed with fine-tipped forceps for 4 seconds to induce more severe RGC loss than found after 1-second ONC. Beginning immediately after ONC, mice were treated with an intranasal drop (20 μL) of either ST266 or PBS. ST266 was unable to attenuate a severe decrease in OKR responses induced by ONC, measured daily over the next 5 days (Fig. 4A); however, ST266 treatment did lead to a small yet statistically significant increase in RGC survival following ONC, with a nonsignificant trend toward increased RGC axon staining (Figs. 4B, 4C). ONC eyes from PBS-treated mice had significant demyelination compared with control, non-ONC eyes (Fig. 4D). In contrast, demyelination was not significantly increased in ONC eyes from mice treated with ST266, compared with control eyes, although ST266 did not decrease demyelination significantly compared with PBS-treated ONC eyes.
Intranasal ST266 Maintains Partial Neuroprotective Effects Up to 10 Days Following ONC Injury

Although initial experiments (Figs. 1–3) show intranasally delivered ST266 can preserve visual function and reduce histopathologic damage up to 5 days after brief, yet harsh, optic nerve trauma, it is possible ongoing damage may continue to accumulate over time with or without treatment. To determine whether these neuroprotective effects can be maintained longer, the right optic nerves of adult C57BL/6j mice were surgically exposed and crushed with fine-tip forceps for 1 second, and, beginning immediately after ONC, mice were treated with an intranasal drop (20 μL) of either ST266 or PBS for the next 10 days. ST266 led to a notable, but nonsignificant trend toward improved OKR responses over the course of 10 days as compared with ONC eyes from PBS-treated mice (Fig. 5A); ST266 treatment prevented a statistically significant decrease in RGC axon staining compared with PBS-treated mice (Fig. 5B). However, ST266 only led to a nonsignificant trend toward increased axon staining compared with ONC eyes of PBS-treated mice. ST266 treatment significantly increased RGC survival (**P < 0.01) after ONC compared with ONC eyes of PBS-treated mice. ST266 treatment induced a trend toward increased RGC survival compared with PBS in ONC eyes, although RGC numbers remained significantly lower than in control eyes (Fig. 5C). Significant loss of myelin induced by ONC in PBS-treated mice as compared with control, noncrush eyes, was significantly attenuated in ST266-treated mice (Fig. 5D).

DISCUSSION

Results show that intranasal delivery of ST266 significantly preserves visual function and reduces RGC damage and loss of myelin in the optic nerve following traumatic ONC injury. PBS-treated mice demonstrate an almost 80% decrease in visual function 1 day post-ONC, and 90% by day 2 (Fig. 1), suggesting...
that most RGC axons are injured during the crush. However, fewer than 50% of RGCs and their axons are lost in ONC eyes from PBS-treated mice (Fig. 2), suggesting that surviving crushed axons normally do not continue to convey visual signals. Thus, in addition to increasing the number of surviving RGCs, ST266 also preserves or restores visual function within those RGC axons that do survive. These effects are similar to neuroprotective effects of daily intranasal ST266 on vision and RGC survival in experimental optic neuritis,8 suggesting that ST266 can modulate conserved pathways leading to RGC survival in multiple optic neuropathies. Alternatively, the array of growth factors and cytokines present in ST266 may use different mechanisms to prevent optic nerve damage following trauma than it used to prevent damage in optic neuritis, as the complex nature of this biologic therapy is likely to stimulate multiple different signaling pathways.

Indeed, it was unknown whether ST266 would be able to exert similar neuroprotective effects in traumatic optic neuropathy as found in optic neuritis. Optic neuritis is an inflammatory disorder of the optic nerve,16 associated with multiple sclerosis, and is frequently studied in autoimmune animal models of multiple sclerosis.17-21 ST266 itself, as well as the AMP cells that produce ST266, have been shown to exert significant anti-inflammatory effects,22-26 often studied in models of wound healing. Thus, prior effects observed in autoimmune optic neuritis8 may have been largely mediated by anti-inflammatory mechanisms that might not have been effective in a direct traumatic nerve injury model. Interestingly, some prior evidence suggested a potential direct neuroprotective effect of ST266, as local ST266 administration into the central nervous system reduced neurologic dysfunction and loss of neurons in a rodent model of traumatic brain injury.27,28 The current results suggest similar effects can be mediated by ST266 in optic nerve trauma using a noninvasive delivery method.
The combination of biologic molecules in ST266, including important growth factors and cytokines6-7 that can stimulate a variety of responses, makes it unlikely that all mechanisms underlying its neuroprotective effects can be fully determined, but contributions of specific pathways may be examined in the future. One candidate is the SIRT1 deacetylase pathway, which was shown previously to be upregulated in retina and optic nerve following intranasal ST266 treatment.8 This is particularly intriguing because treatment with genetic overexpression and pharmacologic activators of SIRT1 have previously been shown to exert similar RGC neuroprotective effects in both experimental optic neuritis as well as ONC injury models.3-13 as found in the current studies with ST266. Together, these findings suggest it may be useful in future studies to examine the ability of ST266 to prevent RGC loss in the presence of SIRT1 inhibitors or genetic deletion of SIRT1 from specific retinal and inflammatory cells.

ST266 was administered once daily in the current study, as in prior studies of ST266 treatment for experimental optic neuritis.9 A higher volume (20 vs 6 μL/drop) was used in the current ONC experiments, although due to limitations of how much of that volume covers the area of absorption, likely through the cribriform plate, it is unclear whether increasing the volume of a single application leads to a significant increase in delivery of ST266 proteins to the eye and optic nerve. To better examine dose-effect responses to increasing ST266 delivery as a potential novel, noninvasive therapeutic modality for eyes and optic nerves that should be investigated further.

Acknowledgments

The authors thank Noveome Biotherapeutics, Inc. for providing ST266 for the studies reported in this article. Supported by National Institutes of Health grant EY019014, Research to Prevent Blindness Physician Scientist Award, and the EM. Kirby Foundation. Portions of this work were subcontracted from grants to Noveome through US Navy Contract N62645-13-C-4014, Cell-Based Wound Therapeutics for Combat Casualties; and The State of Pennsylvania 2014 Bio-Technology Grant SAP#4100068500.

Disclosure: G.A. Grinblat, None; R.S. Khan, None; K. Dine, None; H. Wessel, Noveome (I, E); P. L. Brown, Noveome (E); K.S. Shindler, Noveome (F, C)

References

