Effects of Corneal Hydration on Brillouin Microscopy In Vivo

Peng Shao,1 Theo G. Seiler,1–3 Amira M. Eltony,1 Antoine Ramier,1,4 Sheldon J. J. Kwok,1,4 Giuliano Scarcelli,1,5 Roberto Pineda II,6 and Seok-Hyun Yun1,4,7

1Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
2Institut für Refraktive und Ophthalmochirurgie (IROC), Zürich, Switzerland
3Universitätsklinik für Augenheilkunde, Inselspital, Bern, Switzerland
4Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
5Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
6Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States
7Department of Dermatology, Harvard Medical School, Boston, Massachusetts, United States

Correspondence: Seok-Hyun (Andy) Yun, Harvard Medical School and Massachusetts General Hospital, 65 Landsdowne Street UP-525, Cambridge, MA 02139, USA; syun@hms.harvard.edu.
Submitted: March 2, 2018
Accepted: April 30, 2018

PURPOSE. To investigate how corneal hydration affects the Brillouin frequency of corneal stroma.

METHODS. From a simple analytical model considering the volume fraction of water in corneal stroma, we derived the dependence of Brillouin frequency on hydration and hydration-induced corneal thickness variation. The Brillouin frequencies of fresh ex vivo porcine corneas were measured as their hydration was varied in dextran solution and water. Healthy volunteers (8 eyes) were scanned in vivo repeatedly over the course of 9 hours, and the diurnal variations of Brillouin frequency and central corneal thickness (CCT) were measured.

RESULTS. The measured dependence of Brillouin frequency on hydration, both ex vivo and in vivo, agreed well with the theoretical prediction. The Brillouin frequencies of human corneas scanned immediately after waking were on average ~25 MHz lower than their daytime average values. For stabilized corneas, the typical variation of Brillouin frequency was ±7.2 MHz. With respect to CCT increase or swelling, the Brillouin frequency decreased with a slope of ~1.06 MHz/μm in vivo.

CONCLUSIONS. The ex vivo and in vivo data agree with our theoretical model and support that the effect of corneal hydration on Brillouin frequency comes predominantly from the dependence of the tissue compressibility on the water. Corneal hydration correlates negatively with the Brillouin frequency. During daytime activities, the influence of physiological hydration changes in human corneas is < ±10 MHz. The sensitivity to hydration may potentially be useful in detecting abnormal hydration change in patients with endothelial disorders.

Keywords: cornea biomechanics, Brillouin microscopy, corneal hydration
Here, we report our investigation into the effect of corneal hydration on Brillouin frequency. We present a theoretical model to derive the dependence of Brillouin frequency on hydration and hydration-induced corneal thickness changes. We performed ex vivo experiments using porcine corneas and verified the model. We then measured the diurnal changes of corneal Brillouin frequency and thickness in vivo in healthy subjects and analyzed the data with respect to the theoretical model. Our results provide quantitative guidelines for the measurement time and interpretation of Brillouin data from patients and offer insights into potential applications based on the hydration sensitivity.

METHODS AND MATERIALS

Brillouin Microscopy Ex Vivo and In Vivo

A custom-built Brillouin imaging system was used for experiments in this study. The system uses a 780-nm laser (DL 100, Toptica Photonics AG, Graefelfing, Bavaria, Germany) with an optical power of 5 mW on the sample. The laser beam is focused onto the sample with a microscope objective lens (20X, effective NA = 0.1, Mitutoyo, Kawasaki, Kanagawa, Japan), which provides a lateral resolution of ~5 μm and a ~35-μm axial resolution. Backscattered photons are directed to a Brillouin spectrometer using 2-stage VIPA etalons and an electron-multiplying charge-coupled detector (EMCCD, iXon897, Andor Technologies, Belfast, Northern Ireland). The spectral resolution of the spectrometer is ~300 MHz. The signal integration time was 0.7 seconds per point for ex vivo samples, and 0.3 seconds per point for human subjects in vivo to minimize artifacts due to patient motion. With an integration time of 0.3 seconds, the shot-noise-limited, standard deviation of the Brillouin frequency measured from water samples was approximately ± 5.2 MHz. For each corneal sample, five axial line scans were acquired in the central region within <2 mm radius from the corneal center. The Brillouin frequencies of all the points in the five scan profiles were averaged to determine the Brillouin frequency of the sample.

Porcine Cornea Samples Ex Vivo in Dextran Solution

We used porcine corneas to investigate the variation of Brillouin frequency due to artificially induced hydration changes. Fresh porcine eyeballs (n = 3) were acquired within 12 hours postmortem. The epithelium of all corneas was manually removed with a surgical scalpel, and corneal buttons with ~4 mm diameters were excised from the eyeballs. Immediately after removal, we measured the weight of each corneal button sample (wet tissue weight) using a scientific-grade balance. After the initial measurement, each cornea sample was immersed in 10% dextran solution prepared with distilled water at ~23°C. Every 10 minutes, each sample was taken out of the solution, and the wet tissue weight and Brillouin frequency were measured. During the measurement, which took approximately 3 minutes, we applied drops of dextran solution topically on the sample surface every 1 minute to minimize hydration change of the tissue. After a total immersion time of 40 minutes in the solution, the sample was taken out of solution and placed in the lab environment at ~23°C for 40 minutes. While the sample was drying in the air, we measured the weight and Brillouin frequency every 10 minutes. After the experiment, the corneal sample was left in the air for another 72 hours to dry out completely before we measured the dry weight. The hydration level was determined from \(H = \frac{\text{wet tissue weight} - \text{dry weight}}{\text{dry weight}} \).

Porcine Cornea Samples Ex Vivo in Water

We also examined porcine corneal CCT versus Brillouin measurement when corneal hydration is changed by increasing water content in the stroma tissue. Corneal buttons with sclera rings (n = 3) were excised from fresh porcine eyeballs obtained within 12 hours postmortem. The samples were sequentially immersed in distilled water to induce artificial swelling. Every 45 minutes (excluding the measurement time of 3 minutes), each sample was removed from the solution and placed in an artificial chamber (Barron Precision Instruments, Grand Blanc, MI, USA) connected to a water column to induce a physiologically intraocular pressure (IOP) level of ~15 mm Hg. Then, we measured CCT and central corneal Brillouin frequency. CCT was measured using a custom-built optical coherence tomography (OCT) system by taking cross-sectional images in the central region of the sample. Optical thickness was measured from the images assuming a tissue refractive index of 1.375 at 23°C.

Measurement of Human Corneas In Vivo

To investigate the effect of hydration on Brillouin frequency in vivo, we conducted a pilot study with healthy volunteers in which we measured diurnal changes in corneal central thickness and Brillouin frequency. Four healthy volunteers (male Caucasian, age: 27 ± 1.5 years old) were recruited. The experiment for each subject was performed in 1 day between 8 AM and 6 PM. As soon as the subject woke up, the subject was escorted to the lab with their eyes closed. The first measurement began within 10 to 30 minutes typically, and no later than 1 hour after, the time of waking. We set this first measurement time point to be “0 hour.” Measurements of corneal thickness and Brillouin frequency were performed on both eyes. The CCT was measured by an ophthalmologist using a clinical ultrasound pachymeter (SP-100, Tomey Corp., Nagoya, Aichi-ken, Japan). The minimum value from five repeated pachymetry scans was chosen as the CCT. Brillouin frequency was measured from the central corneal region <2 mm from the pupil center. After the first measurement, the subject followed their normal daytime activities, except that they returned to the lab at 1, 2, 3, 6, and 9 hours for CCT and Brillouin measurements. This research followed the tenets of the Declaration of Helsinki, and informed consent was obtained from the subjects after explanation of the nature and possible consequences of the study. This study followed a protocol approved by the institutional review board (IRB) at Massachusetts General Hospital.

Statistical Analysis

The box plot shows the minimum, first quartile, median, third quartile, and maximum. One-way analysis of variance (ANOVA) was conducted to test the effect of time after eye opening on the changes in CCT and Brillouin measurements. Post hoc comparisons were made using the Tukey honest significance difference (HSD) test. Two-tailed Student’s t-test was used to compare absolute changes in Brillouin frequency due to hydration. Statistical calculations were performed in MATLAB.

RESULTS

Model for the Hydration Dependence of Brillouin Frequency

The Brillouin frequency shift Ω for back scattering Brillouin microscopy is given by:

\[\Omega = \frac{\lambda}{4n_d^2} \]
where n, M, ρ, and β are the refractive index, longitudinal modulus, mass density, and compressibility of tissue (corneal stroma), and λ is the optical wavelength. $M = K + 4/3G$, where K and G are bulk and shear moduli, respectively. In soft tissues where $G \ll K$, $M \approx K = 1/\beta$. $\sqrt{1/\rho\beta}$ corresponds to the speed of longitudinal acoustic waves v (at GHz hypersonic frequency).

\[\Omega = \frac{2}{\lambda} n \sqrt{M/\rho} = \frac{2}{\lambda} n \sqrt{1/\rho\beta} \]

(1)

The hydration level (H) of tissue is defined as:

\[H = \frac{\text{total tissue weight} - \text{dry weight}}{\text{dry weight}} \]

(2)

This is equivalent to the ratio of the weight of water to dry weight. For most species including humans, water occupies ~76% of corneal stroma by weight. Therefore, the hydration of corneal stroma is close to 3.2 ($= H_0$) in normal physiological conditions. The dry weight comes largely from collagen.
fibrils (~15 weight %) and other extracellular matrix components.

To estimate the physical properties in Equation 1, tissues are conveniently modeled to consist of liquid water and "solid" components. The latter are mostly hydrated proteins in a physiological or swollen condition. It is assumed that the properties of these "solid" protein components are independent of hydration and that the liquid water and solid part contribute to the physical properties of the tissue additively. Let V_w denote the volume of water in tissue, and V_s the volume of the solid constituents. Since the total volume is the sum of the two, $V = V_w + V_s$, the volume fraction of water is expressed as $f_w = V_w / V$, and the volume fraction of the solid part is $1 - f_w$. In terms of the volume fraction of water, the refractive index, density, and compressibility can be described:

$$n = n_wf_w + n_s(1 - n_w)$$

$$\rho = \rho_wf_w + \rho_s(1 - n_w)$$

$$\beta = \beta_wf_w + \beta_s(1 - n_w)$$

Here, n_w, ρ_w, and β_w are the refractive index, density, and compressibility of water, and n_s, ρ_s, and β_s are these properties of the solid components. From the definition of hydration, $H = \rho_s / (\rho_w + \rho_s)$, we introduce a variable, x, describing the fractional volume change, defined by

$$f_w = f_{w0}(1 + x); f_{w0} = \frac{\rho_s H_0}{\rho_w + \rho_s H_0}$$

where f_{w0} denotes the volume fraction of water in the normal physiological condition (at $H_0 = 3.2$; the subscript 0 indicates the physiological condition). The physiological values of refractive index (n_0) and density (ρ_0) are available in literature. The compressibility values can be determined from the Brillouin frequencies of water (χ_0) at the body temperature of $37^\circ C$ and corneal tissues (χ_0) in vivo. These values are summarized in the Table.

From $f_w = f_{w0} / V_0$, we get $V = \frac{V}{1 - f_{w0} x}$. Using physiological tissue volume $V_0 = \frac{V}{1 - f_{w0} x}$, we relate the total volume change to the fractional volume change x via:

$$\frac{\Delta V}{V_0} = \frac{f_{w0} x}{1 - f_{w0} - f_{w0} x}$$

In the cornea, collagen fibrils are arranged parallel to the tissue plane. This specific orientation, as well as the globular

FIGURE 3. Time-lapse measurement of porcine corneas ex vivo immersed in distilled water. (a) Five representative OCT images of the central cornea, taken at 45-minute intervals in the experiment. Scale bar: 1 mm. (b) Measured Brillouin frequency and CCT of three corneal samples. (c) Comparison to the theoretical model (dashed line). The normalized Brillouin frequency ($\Delta \chi/\chi_0$) and swelling ratio were obtained with $\Omega_0 = 5.62$ GHz ($23^\circ C$) and CCT$_0 = 0.97$, 0.86, and 0.92 mm, respectively, which are indicated with dotted lines in b.

FIGURE 4. In vivo diurnal measurements of the CCT and Brillouin frequency in four healthy human subjects (a–d). The first measurements ($t = 0$) were performed within 10 to 30 minutes of when the subjects first opened their eyes after waking in the morning. Subsequent measurements were made at 1- or 3-hour intervals. Error bars indicate the standard deviation of each data point (±9.3 MHz on average). Yellow circles in (a) are control data from distilled water at room temperature, showing the stability of the instrument during the daytime.
geometry of the eye, makes the cornea swell predominantly along the thickness direction and uniformly throughout the entire cornea. For this case of one-dimensional swelling, we can write

\[D = V / V_0 = D_{CCT} / CCT_0, \]

where \(CCT \) is the central cornea thickness, \(CCT_0 \) is the physiological \(CCT \) value (without swelling), and \(D_{CCT} = CCT / CCT_0 \). Therefore, introducing a variable \(l = D_{CCT} / CCT_0 \), we obtain:

\[x = \frac{(1 - f_{w0})l}{f_{w0}(1 + l)} \quad (6) \]

In Figure 1, we plot the various physical properties of corneal stroma tissue as a function of the normalized thickness change \(l \).

In most cases in vivo, the volume and thickness changes are small, that is, \(x, l \ll 1 \). Using the Taylor expansion, we obtain:

\[\Delta V = V - V_0 = V_0 \left(1 - f_{w0}x \right) \quad (7) \]

and

\[H = \frac{\rho_{w}f_{w0}(1 + x)}{\rho_{s}(1 - f_{w0} - f_{s0})} \cdot \frac{1}{f_{w0}} \cdot \left(1 + \frac{x}{1 - f_{w0}} \right) \quad (8) \]

Using \(x \ll 1 \), we derive a linear relationship \(12 \) between hydration and corneal thickness:

\[H - H_0 = a(CCT - CCT_0) \quad (9) \]

where \(a = H_0 / CCT_0 \). With \(H_0 = 3.2, f_{w0} = 0.8 \), and \(CCT_0 = 0.54 \) mm, we obtain \(a = 7.4 \) mm\(^{-1} \). This value is in reasonable

TABLE. The Physical Properties of Human Corneal Stroma Used in the Model

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Human Corneas In Vivo</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0)</td>
<td>3.2</td>
<td>Ref. 23</td>
</tr>
<tr>
<td>(f_{w0})</td>
<td>0.80</td>
<td>Equation 4, Ref. 28</td>
</tr>
<tr>
<td>(n_0)</td>
<td>1.375</td>
<td>Ref. 21</td>
</tr>
<tr>
<td>(n_w)</td>
<td>1.355</td>
<td>Ref. 21</td>
</tr>
<tr>
<td>(n_s)</td>
<td>1.531</td>
<td>Equation 3</td>
</tr>
<tr>
<td>(\rho_0)</td>
<td>1050 kg/m(^3)</td>
<td>Ref. 28</td>
</tr>
<tr>
<td>(\rho_w)</td>
<td>1000 kg/m(^3)</td>
<td>–</td>
</tr>
<tr>
<td>(\rho_s)</td>
<td>1250 kg/m(^3)</td>
<td>Equation 3</td>
</tr>
<tr>
<td>(\Omega_0)</td>
<td>5.724 GHz</td>
<td>Exp. at (\lambda = 780) nm</td>
</tr>
<tr>
<td>(\Omega_w)</td>
<td>5.219 GHz</td>
<td>at 37°C, Equation 1, Ref. 29</td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>3.61 \times 10^{-10} \text{ Pa}^{-1}</td>
<td>Equation 1</td>
</tr>
<tr>
<td>(\beta_w)</td>
<td>4.31 \times 10^{-10} \text{ Pa}^{-1}</td>
<td>Equation 1</td>
</tr>
<tr>
<td>(\beta_s)</td>
<td>0.83 \times 10^{-10} \text{ Pa}^{-1}</td>
<td>Equation 3</td>
</tr>
<tr>
<td>(CCT_0)</td>
<td>0.54 mm</td>
<td>Ref. 30</td>
</tr>
<tr>
<td>Slope</td>
<td>-1.07 MHz/\mu m</td>
<td>Equation 11</td>
</tr>
</tbody>
</table>
agreement with an experimentally measured value\(^{25}\) \(a = 7.0\) mm\(^{-1}\). As a numerical example, a 1% change in hydration would cause approximately 1% change in corneal thickness (\(l = 0.01; -5.4\) \(\mu\)m) and 0.25% change in water volume fraction (\(x = 0.0025\)). For small hydration changes, the relative change of Brillouin frequency can be expressed by taking the derivative on both sides of Equation 1:

\[
\frac{\Delta \Omega}{\Omega} = \frac{\Delta n}{n} - 0.5 \frac{\Delta \rho}{\rho} - 0.5 \frac{\Delta \beta}{\beta} \tag{10a}
\]

\[
= \left(\frac{n_w - n}{n} \right) \omega x - 0.5 \left(\frac{\rho_w - \rho}{\rho} \right) \omega x - 0.5 \left(\frac{\beta_w - \beta}{\beta} \right) \omega x \tag{10b}
\]

Using the values in the Table, we get:

\[
\frac{\Delta \Omega}{\Omega} = -0.114x + 0.095x - 0.385x \tag{10c}
\]

The contributions from index and density changes (the first and second terms on the right-hand side) approximately cancel each other out.\(^{26}\) The third term on the right-hand side, the compressibility change, makes the dominant contribution. From \(\frac{\Delta \Omega}{\Omega} = -0.403x\), we get:

\[
\frac{\Delta \Omega}{\Omega_0} = -0.10 \frac{\Delta CCT}{CCT_0} \tag{11}
\]

The relative change of Brillouin frequency is a 10th of that of thickness. With \(x = 7.80\) nm, \(\Omega_0 = 5.724\) GHz and \(CCT_0 = 540\) \(\mu\)m, we calculate a slope of Brillouin frequency with respect to corneal thickness change: \(\frac{\Delta \Omega}{\Delta CCT} = -1.07\) [MHz/\(\mu\)m].

Porcine Corneas Ex Vivo

The ex vivo data showed dynamic changes of hydration and Brillouin frequency (Fig. 2a). In the dextran solution, corneal tissues undergo swelling, and we observed a trend of decreasing Brillouin frequency. Once the samples were removed and exposed to the air, the Brillouin frequency decreasing Brillouin frequency. In the dextran solution, corneal tissues undergo swelling, and we observed a trend of decreasing Brillouin frequency. For small hydration changes, the relative change of Brillouin frequency can be expressed by taking the derivative on both sides of Equation 1:

\[
\frac{\Delta \Omega}{\Omega} = \frac{\Delta n}{n} - 0.5 \frac{\Delta \rho}{\rho} - 0.5 \frac{\Delta \beta}{\beta} \tag{10a}
\]

\[
= \left(\frac{n_w - n}{n} \right) \omega x - 0.5 \left(\frac{\rho_w - \rho}{\rho} \right) \omega x - 0.5 \left(\frac{\beta_w - \beta}{\beta} \right) \omega x \tag{10b}
\]

Using the values in the Table, we get:

\[
\frac{\Delta \Omega}{\Omega_0} = -0.114x + 0.095x - 0.385x \tag{10c}
\]

The contributions from index and density changes (the first and second terms on the right-hand side) approximately cancel each other out.\(^{26}\) The third term on the right-hand side, the compressibility change, makes the dominant contribution. From \(\frac{\Delta \Omega}{\Omega} = -0.403x\), we get:

\[
\frac{\Delta \Omega}{\Omega_0} = -0.10 \frac{\Delta CCT}{CCT_0} \tag{11}
\]

The relative change of Brillouin frequency is a 10th of that of thickness. With \(x = 7.80\) nm, \(\Omega_0 = 5.724\) GHz and \(CCT_0 = 540\) \(\mu\)m, we calculate a slope of Brillouin frequency with respect to corneal thickness change: \(\frac{\Delta \Omega}{\Delta CCT} = -1.07\) [MHz/\(\mu\)m].

Human Corneas In Vivo

We observed diurnal variations in both CCT and Brillouin frequency in vivo (Fig. 4). Corneal hydration is known to increase during sleep because of the osmotic influx of water and disabled evaporation through closed eyelids, and is possibly also elevated during a short time window after waking.\(^{18}\)

We compared the data obtained at different time points after morning eye opening. We grouped the data measured after 3 to 9 hours, expecting a priori that after 3 hours the corneas had sufficient time to stabilize after waking. Figure 5 shows changes in CCT and Brillouin frequency shift with respect to their mean values after stabilization (3–9 hours). The Lilliefors test confirmed normal distribution of the in vivo data at each time point (\(P < 0.05\)). An ANOVA yielded significant variation of CCT and Brillouin frequency shift with time after eye opening. CCT: \(F(5,44) = 29.57, P < 0.001\); Brillouin: \(F(3,44) = 14.75, P < 0.001\). Post hoc analyses were conducted using Tukey’s HSD test at the \(\alpha = 0.05\) level. The change in CCT measured at 0 hours (17 ± 8 \(\mu\)m) was significantly different from measurements at 1 hour (5 ± 4 \(\mu\)m), 2 hours (1 ± 4 \(\mu\)m), and at 3 to 9 hours (0 ± 3 \(\mu\)m). Similarly, for the Brillouin frequency data, we found significant differences between the change at 0 hours (−25 ± 12 MHz) and the changes at 1 hour (−10 ± 13 MHz), 2 hours (−3 ± 7 MHz), and 3 to 9 hours (0 ± 8 MHz). For both the CCT and Brillouin measurements, no significant differences were found between the 2-hour time point and baseline. The changes in Brillouin and CCT measurements in the first 2 hours are very likely due to natural dehydration after waking, as observed in earlier studies.\(^{18}\)

Based on this finding, we defined the mean CCT and Brillouin frequency measured between 2 and 9 hours after eye opening as the daytime baseline values, called CCT\(_0\) and \(\Omega_0\). The scatter plot in Figure 6 shows changes in Brillouin frequency and CCT with respect to baseline for eight corneas. The data indicate a linear relationship between Brillouin frequency and CCT, best fitted with a slope of −1.06 MHz/\(\mu\)m. This coefficient agrees with the prediction of the theoretical model in Equation 11.

DISCUSSION

The experimental data obtained from the ex vivo and in vivo measurements validated the accuracy of our theoretical model. According to the theoretical model and the experimental result, the effect of corneal hydration on Brillouin frequency comes predominantly from the dependence of mechanical compressibility of tissue on the volume fraction of water. An increase in hydration causes an increase in the overall compressibility of the tissue and a decrease in Brillouin frequency.

We did not measure IOP of the subjects for this study on site to avoid any physical perturbation to the cornea by an IOP measurement. All the subjects have healthy corneas and had an eye examination within 12 months before this study, so their IOP levels are expected to be within a normal physiological range. The subjects may have some diurnal variation of IOP. However, we believe this effect on the Brillouin frequency would be much smaller than the measured effect of diurnal hydration changes. Our future work will investigate the relationship between IOP and Brillouin frequency.

The shot-noise-limited, standard deviation error of the clinical Brillouin microscope used in this study was approxi-
mately±5.2MHzat0.3-secondsintegrationtime.27From
Equations11and12,thenoise-equivalentfrequenciesensitivity
to corneal compressibility \(\frac{\Delta H}{H_0}\), and thenoise-equivalent
sensitivity to CCT change is ±4.7 μm. This sensitivity has
implications for the potential clinical applications of Brillouin
microscopy.

First, to determine the normal Brillouin frequency of a
patient, measurement should be conducted at least 2 hours
after waking. The mean-subtracted Brillouin data (\(\Delta \Omega\)) during
t = 2–9 hours had a standard deviation of 7.2 MHz. This small
deviation indicates that corneal hydration is stable enough
(once the initial dehydration upon waking has occurred) that
the daytime variation in Brillouin frequency may be almost
negligibly small.

Second, hydration can be a compounding factor in
interpreting the Brillouin frequency solely from a biomechanical
standpoint. The physiological corneal hydration level
during the daytime hours (after morning stabilization) can
vary slightly among individuals, but the interpersonal differ-
ence in hydration is hard to measure independently. The
mechanical compressibility of corneal stroma, which deter-
mines the Brillouin frequency, is also affected by changes in the
mechanical compressibility of corneal stroma, which deter-
zeases the Brillouin frequency. This small deviation indicates that corneal hydration is stable enough
(once the initial dehydration upon waking has occurred) that
the daytime variation in Brillouin frequency may be almost
negligibly small.

Further clinical studies are warranted to explore this diagnostic
potential.

References

1. Scarcelli G, Yun SH. Brillouin confocal microscopy for three-
dimensional mechanical imaging. Nature Photonics. 2008;2:
39–43.
2. Meng Z, Traverso AJ, Ballmann CW, Troyanova-Wood MA,
Yakovlev VV. Seeing cells in a new light: a renaissance of Brillouin
scattering measurements in mature and newly formed bone
tissue surrounding an implant. J Biomech Eng. 2011;133:
201006.
4. Cusack S, Miller A. Determination of the elastic constants of
collagen by Brillouin light scattering. J Mol Biol. 1979;135:
39–51.
biomechanics into clinical practice: current state and future
Selective two-photon collagen crosslinking in situ measured
analysis of the aging crystalline lens. Invest Ophthalmol Vis
biomechanical mapping of normal and keratoconus corneas.
10. Toyras J, Laasanen MS, Saarakkala S, et al. Speed of sound
in normal and degenerated bovine articular cartilage. Ultrasound
Theoretical mineralogy, densities, seismic wave speeds, and
12. Manchester PT Jr. Hydration of the cornea. Trans Am
hydration on ultrasound velocity and backscatter. Ultrasound
stroma revealed by quantitative dynamic atomic force
15. Hatami-Marbini H. Hydration dependent viscoelastic tensile
16. Goodfellow JM, Elliott GF, Woolgar AE. X-ray diffraction
17. Hedbys BO, Mishima S. The thickness-hydration relationship of
1072.

